BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.1
Eine Funktion in einem geeigneten Definitionsbereich als eindeutige Zuordnung verstehen und als Darstellung der Abhängigkeit zwischen Größen interpretieren; den Graphen einer gegebenen Funktion mittels Technologieeinsatz darstellen, Funktionswerte ermitteln und den Verlauf des Graphen im Kontext interpretieren. Funktionen können auch abschnittsweise definiert sein. Variablen kontextbezogen benennen (nicht nur x und y); dies gilt auch für Parameter von Funktionen (am Beispiel der linearen Funktion: nicht nur k für Anstieg, d für Ordinatenabschnitt)
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4003
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fußballspielen im Park - Aufgabe A_250
Teil a
Roland und Julia spielen im Park Fußball. Roland legt den Ball auf die horizontale Wiese, nimmt Anlauf und schießt. Die Flugbahn des Balls kann näherungsweise durch den Graphen einer Polynomfunktion 3. Grades h beschrieben werden. Dabei wird der Ball als punktförmig angenommen.
\(h\left( x \right) = - 0,003 \cdot {x^3} + 0,057 \cdot {x^2}{\text{ mit }}x \geqslant 0\)
x | horizontale Entfernung des Balls von der Abschussstelle in Metern (m) |
h(x) | Höhe des Balls über dem Boden an der Stelle x in m |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den für diesen Sachzusammenhang größtmöglichen sinnvollen Definitionsbereich für die Funktion h. [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den höchsten Punkt der Flugbahn. [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4005
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fußballspielen im Park - Aufgabe A_250
Teil c
Roland und Julia spielen im Park Fußball. Roland legt den Ball auf die horizontale Wiese, nimmt Anlauf und schießt. Die Flugbahn des Balls kann näherungsweise durch den Graphen einer Polynomfunktion 3. Grades h beschrieben werden. Dabei wird der Ball als punktförmig angenommen.
\(h\left( x \right) = - 0,003 \cdot {x^3} + 0,057 \cdot {x^2}{\text{ mit }}x \geqslant 0\)
x | horizontale Entfernung des Balls von der Abschussstelle in Metern (m) |
h(x) | Höhe des Balls über dem Boden an der Stelle x in m |
Roland überlegt, ob er bei diesem Schuss den Ball über ein 2,8 m hohes Klettergerüst, das in direkter Schussrichtung 10 m von der Abschussstelle entfernt steht, schießen könnte.
1. Teilaufgabe - Bearbeitungszeit 5:40
Überprüfen Sie nachweislich, ob der Ball bei diesem Schuss tatsächlich über das Klettergerüst fliegen kann. [1 Punkt]
Aufgabe 4129
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2018 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kugelstoßen - Aufgabe A_268
Teil c
Kugelstoßen ist eine Disziplin bei den Olympischen Sommerspielen. Eine Metallkugel muss so weit wie möglich aus einem Kreis in einen vorgegebenen Aufschlagbereich gestoßen werden. Die Bahnkurve einer gestoßenen Kugel lässt sich näherungsweise durch den Graphen der quadratischen Funktion h beschreiben:
\(h\left( x \right) = - 0,05 \cdot {x^2} + 0,75 \cdot x + 2{\text{ mit }}x \geqslant 0\)
mit
x ... horizontale Entfernung der Kugel von der Abstoßstelle in m
h(x) ... Höhe der Kugel über dem Boden bei der horizontalen Entfernung x in m
1. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie an, in welcher Höhe die Kugel abgestoßen wird.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, in welcher horizontalen Entfernung von der Abstoßstelle die Kugel auf dem Boden aufschlägt.
[1 Punkt]
Aufgabe 4205
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil c
Der nachstehend dargestellte Graph zeigt annähernd den Geschwindigkeitsverlauf eines im Stadtgebiet fahrenden Autos.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie näherungsweise die Länge des im Zeitintervall [0; 45] zurückgelegten Weges.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie die Höchstgeschwindigkeit des Autos ab. Geben Sie das Ergebnis in km/h an.
[1 Punkt]
Aufgabe 4180
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pelletsheizung - Aufgabe A_068
Teil b
Die Temperatur, auf die das Wasser eines Heizsystems erwärmt wird, bezeichnet man als Vorlauftemperatur. Bei einer Pelletsheizung ist die Vorlauftemperatur abhängig von der Außentemperatur. Den Graphen der zugehörigen Funktion V nennt man Heizkurve. In der nachstehenden Abbildung ist eine solche Heizkurve für Außentemperaturen von –15 °C bis 20 °C dargestellt.
- Aussage 1: \(V\left( x \right) > 0{\text{ und }}V'\left( x \right) > 0\)
- Aussage 2: \(V'\left( x \right) > 0{\text{ und }}V''\left( x \right) < 0\)
- Aussage 3: \(V\left( x \right) < 0{\text{ und }}V''\left( x \right) < 0\)
- Aussage 4: \(V'\left( x \right) < 0{\text{ und }}V''\left( x \right) < 0\)
- Aussage 5: \(V\left( x \right) < 0{\text{ und }}V''\left( x \right) > 0\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf die Funktion V im Intervall ]0; 20[ zutreffende Aussage an.
[1 aus 5] [1 Punkt]
Die Funktion V soll im Intervall [–15; 20] durch eine lineare Funktion ersetzt werden. Diese soll an den Randpunkten des Intervalls die gleichen Funktionswerte wie V haben.
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in der obigen Abbildung den Graphen dieser linearen Funktion ein.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie an, um wie viel Grad Celsius die Vorlauftemperatur bei einer Außentemperatur von 0 °C geringer ist, wenn anstelle der Funktion V die lineare Funktion verwendet wird.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4053
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Spam - Aufgabe B_418
Teil a
Als Spam werden unerwünscht zugestellte E-Mails bezeichnet. Der nachstehenden Tabelle kann man die Entwicklung der Anzahl der weltweit täglich versendeten Spam-Mails in Milliarden entnehmen.
Beginn des Jahres | Anzahl der weltweit täglich versendeten Spam-Mails in Milliarden |
2010 | 62 |
2011 | 42 |
2012 | 30 |
Die Anzahl der Spam-Mails kann näherungsweise durch die Funktion S beschrieben werden: \(S\left( t \right) = 50 \cdot {0,6^t} + 12\)
mit:
t | Zeit in Jahren ab 2010, d. h. für den Beginn des Jahres 2010 gilt: t = 0 |
S(t) | Anzahl der weltweit täglich versendeten Spam-Mails zur Zeit t in Milliarden |
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass die Funktion S die Anzahl der weltweit täglich versendeten Spam-Mails für den Beginn des Jahres 2012 richtig beschreibt.
[1 Punkt]
Die Funktion S kann auch in der Form \(S\left( t \right) = 50 \cdot {e^{k \cdot t}} + 12\) angegeben werden.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie k.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie das Ergebnis der Berechnung \(\dfrac{{S\left( 5 \right) - S\left( 3 \right)}}{{S\left( 3 \right)}} \approx - 0,30\) im gegebenen Sachzusammenhang.
[1 Punkt]
Aufgabe 4209
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fressverhalten von Furchenwalen - Aufgabe A_288
Teil a
Bei einem Beutestoß nehmen Furchenwale mit weit geöffnetem Maul eine große Menge Meerwasser und die darin enthaltene Beute auf. Forscher/innen beobachteten dieses Fressverhalten. Sie ermittelten mithilfe von Sensoren die Geschwindigkeit des Furchenwals bei einem Beutestoß, die Größe der Maulöffnung und das gesamte Wasservolumen, das dabei aufgenommen wird.
Die Geschwindigkeit eines Furchenwals bei einem Beutestoß, der insgesamt 20 s dauert, kann näherungsweise durch die Funktion v beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Schätzen Sie die Länge s desjenigen Weges ab, der bei diesem Beutestoß zurückgelegt wird.
[1 Punkt]
Ein Forscher behauptet: „Der Furchenwal erreicht bei diesem Beutestoß eine maximale Geschwindigkeit von 15 km/h.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass diese Behauptung falsch ist.
[1 Punkt]
Aufgabe 4213
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kochzeit von Eiern - Aufgabe A_289
Teil b
Die quadratische Funktion Z beschreibt näherungsweise die Kochzeit für ein weich gekochtes Ei in Abhängigkeit von der Lagertemperatur:
\(Z\left( x \right) = - 0,024 \cdot {x^2} - 2,16 \cdot x + 252\)
x | Lagertemperatur in °C |
Z(x) | Kochzeit bei der Lagertemperatur x in s |
Ein Ei wird anstatt bei einer Temperatur von 4 °C (Kühlschranktemperatur) bei einer Temperatur von 20 °C (Raumtemperatur) gelagert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, um wie viele Sekunden die Kochzeit dadurch kürzer ist.
[1 Punkt]
Aufgabe 4196
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil b
In der nachstehenden Abbildung ist der Höhenverlauf während einer 3-stündigen Wanderung dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die mittlere Änderungsrate der Seehöhe in Abhängigkeit von der Zeit für die gesamte Wanderung. Geben Sie das Ergebnis mit der zugehörigen Einheit an.
[1 Punkt]
Jemand behauptet: „Nach etwa 1,5 Stunden wurde eine Pause eingelegt. Das erkennt man daran, dass der Graph während der Pause waagrecht verlauft.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie, dass diese Behauptung nicht zwingend richtig sein muss.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4197
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil c
Bei der Besteigung eines bestimmten Berges ist die Gesamtgehzeit indirekt proportional zu dem durchschnittlichen überwundenen Höhenunterschied in Metern pro Stunde (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung ab, welcher Höhenunterschied bei dieser Besteigung insgesamt überwunden werden muss.
[1 Punkt]
Aufgabe 4085
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Smartphones - Aufgabe B_079
Teil c
Die Entwicklung der weltweiten Verkaufszahlen von Smartphones kann modellhaft durch die Funktion S beschrieben werden:
\(S\left( t \right) = \dfrac{{1918}}{{1 + 4,84 \cdot {e^{ - 0,54 \cdot t}}}}\)
- t ... Zeit in Jahren (t = 0 entspricht dem Beginn des Jahres 2010)
- S(t) ... Anzahl der bis zur Zeit t insgesamt verkauften Smartphones in Millionen Stück
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe dieses Modells die Anzahl der bis zum Beginn des Jahres 2020 insgesamt verkauften Smartphones.
[1 Punkt]
Im nachstehenden Diagramm ist der Graph der Ableitungsfunktion S′ dargestellt. Auf dem Graphen von S′ ist der Hochpunkt H markiert.
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie die mathematische Bedeutung der Stelle t = 2,9 in Bezug auf die Funktion S. [1 Punkt]
Aufgabe 4161
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C - Aufgabe A_281
Teil a
Der Vitamin-C-Gehalt eines Apfels nimmt nach der Ernte exponentiell ab. Alle 4 Wochen nimmt der Vitamin-C-Gehalt um 20 % bezogen auf den Wert zu Beginn dieser 4 Wochen ab. Ein bestimmter Apfel hat bei der Ernte einen Vitamin-C-Gehalt von 18 mg. Der Vitamin-C-Gehalt dieses Apfels in Milligramm soll in Abhängigkeit von der Zeit t in Wochen beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Funktion. Wählen Sie t = 0 für den Zeitpunkt der Ernte.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Vitamin-C-Gehalt dieses Apfels 36 Wochen nach der Ernte.
[1 Punkt]