abc-Formel
Die abc Formel, auch große Lösungsformel genannt, dient zur Lösung von quadratischen Gleichungen, bei denen a, b bzw. c die Koeffizienten vom quadratischen, vom linearen und vom konstanten Glied sind. Jene quadratischen Gleichungen deren Diskriminante D negativ ist, lassen sich nur in den komplexen Zahlen lösen.
Hier findest du folgende Inhalte
Formeln
Quadratischen Gleichung mit einer Variablen
In dieser Mikro-Lerneinheit lernst du mehrere Methoden, wie man quadratische Gleichungen lösen kann. Wir werden die allgemeine quadratische Gleichung mittels der abc-Formel (große Lösungsformel) und die normierte quadratische Gleichung mittels der pq-Formel (kleine Lösungsformel) lösen. Mit Hilfe der Diskriminante erkennst du, wie viele Lösungen eine quadratische Gleichung hat und welcher Zahlenmenge die Lösungen angehört.
Gleichung 2. Grades
Eine allgemeine quadratische Gleichung in einer Variablen besteht aus einem quadratischen, einem linearen und einem konstanten Glied
\(a \cdot {x^2} + b \cdot x + c = 0\)
Damit es sich auch wirklich um eine quadratische Gleichung handelt, muss a≠0 und es darf auch kein Term höherer als zur 2. Potenz vorkommen. Eventuell muss man die Null auf der rechten Seite vom Gleichheitszeichen durch Äquivalenzumformungen herbeiführen.
- Parameter a: mit zunehmenden a wird der Graph der Parabel immer steiler
- Parameter b: mit zunehmenden b verschiebt sich der Scheitelpunkt der Parabel entlang einer Geraden mit 45° Steigung vom Ursprung weg
- Parameter c: verschiebt den Graph der Parabel in Richtung der y-Achse
Lösung einer allgemeinen quadratischen Gleichung mittels abc-Formel
Die Lösung einer allgemeinen quadratischen Formel erfolgt mittels der abc-Formel. Die abc-Formel wird auch gerne "„Mitternachtsformel“
oder „große Lösungsformel“ genannt.
\(\eqalign{ & a{x^2} + bx + c = 0 \cr & {x_{1,2}} = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \cr & D = {b^2} - 4ac \cr}\)
Man erhält 2 Lösungen, die Lösung für x1 ergibt sich, wenn man vor der Wurzel das "+" rechnet, die Lösung für x2 ergibt sich, wenn man vor der Wurzel das "-" rechnet.
Quadratische Gleichung in Normalform
Bei einer quadratischen Gleichung in Normalform ist der Koeffizient vor dem quadratischen Glied eine "1". Darüber hinaus gibt es noch ein lineares und ein konstantes Glied
\({x^2} + px + q = 0\)
Normierte quadratische Gleichung
Man kann die allgemeine quadratische Gleichung in eine quadratische Gleichung in Normalform durch Division der Gleichung durch a, also dem Koeffizienten im quadratischen Glied, wie folgt umrechnen bzw. normieren
\(\eqalign{ & a \cdot {x^2} + b \cdot x + c = 0\,\,\,\,\,\left| {:a} \right. \cr & {x^2} + \frac{b}{a} \cdot x + \frac{c}{a} = 0 \cr & {x^2} + p \cdot x + q = 0 \cr & {\text{mit}} \cr & {\text{p = }}\dfrac{b}{a};\,\,\,\,\,q = \dfrac{c}{a} \cr} \)
Lösung einer quadratischen Gleichung in Normalform mittels pq-Formel
Die Lösung einer quadratischen Gleichung in Normalform erfolgt mittels der pq Formel, auch "kleine Lösungsformel" genannt.
\(\eqalign{ & {x^2} + px + q = 0\, \cr & {x_{1,2}} = - \dfrac{p}{2} \pm \sqrt {{{\left( {\dfrac{p}{2}} \right)}^2} - q\,\,\,\,} \cr & D = {\left( {\dfrac{p}{2}} \right)^2} - q \cr}\)
Der Satz von Vieta bietet eine Möglichkeit einer Probe, denn es muss gelten:
\(\eqalign{ & {x_1} + {x_2} = - p = - \dfrac{b}{a} \cr & {x_1} \cdot {x_2} = q = \dfrac{c}{a} \cr} \)
Anmerkung: Man kann jede quadratische Gleichung mit der abc Formel lösen. Ob es eine Vereinfachung bringt eine allgemeine quadratische Gleichung mittels Division durch a auf die Normalform zuzurechnen, um dann die etwas einfachere pq-Formel nützen zu können muss man individuell entscheiden. Im Zeitalter vom Taschenrechner, wird es sich wohl nicht auszahlen.
Rein quadratische Gleichung
Bei einer rein quadratischen Gleichung gibt es nur ein quadratisches und ein konstantes, aber kein lineares Glied.
\(a \cdot {x^2} + c = 0\)
Lösung einer rein quadratischen Gleichung mittels Äquivalenzumformung
Die Lösung einer rein quadratischen Gleichung erfolgt durch Äquivalenzumformung
\(\eqalign{ & a \cdot {x^2} + c = 0 \cr & {x_{1,2}} = \pm \sqrt { - \dfrac{c}{a}} \cr & D = - \dfrac{c}{a} \cr} \)
Diskriminante
In allen drei Lösungen ist ein Wurzelausdruck enthalten. Den Wert unter dem Wurzelzeichen nennt man Diskriminante. Mit Hilfe der Diskriminanten erkennst du, wie viele Lösungen eine quadratische Gleichung hat und welcher Zahlenmenge die Lösungen angehören.
Quadratische Gleichungen haben, abhängig von der Diskriminante "D" drei mögliche Lösungsfälle.
1. Fall: D > 0 à 2 Lösungen in R, die zugrunde liegende Funktion hat 2 Nullstellen. Dh der Graph der Funktion schneidet 2-Mal die x-Achse
2. Fall: D = 0 à 1 (eigentlich 2 gleiche) Lösung in R, die zugrunde liegende Funktion hat 1 doppelte Nullstelle. Dh der Graph der Funktion berührt die x-Achse. \({x_1} = {x_2} = \dfrac{{ - b}}{{2a}}{\text{ bzw}}{\text{. }}{{\text{x}}_1} = {x_2} = - \dfrac{p}{2}\)
3. Fall: D < 0 à keine Lösung in R, aber 2 konjugiert komplexe Lösungen in C. Der Graph der zugrunde liegenden Funktion berührt oder schneidet die x-Achse nicht.
Illustration vom Zusammenhang zwischen Diskriminante und Anzahl der reellen Nullstellen
Quadratische Gleichung mit komplexer Lösung
Im Bereich der komplexen Zahlen lassen sich nun auch jene quadratischen Gleichungen lösen, deren Diskriminante kleiner Null ist - d.h. deren Wert unter der Wurzel negativ ist. In diesem Fall gibt es 2 zu einander konjugiert komplexe Lösungen.
\(D < 0: \pm \sqrt { - D} = \pm \sqrt { - 1 \cdot D} = \pm \sqrt { - 1} \cdot \sqrt D = \pm i \cdot \sqrt D \)
→ Wir gehen im Kapitel über komplexe Zahlen auf das Thema näher ein.
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgaben
Aufgabe 36
Quadratische Gleichung mit komplexer Lösung
Gegeben sei nachfolgende quadratische Gleichung:
Berechne:
\(2{x^2} + 4x + 10 = 0\)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 37
Quadratische Gleichung mit komplexer Lösung
Gegeben sei nachfolgende quadratische Gleichung:
Berechne:
\(\dfrac{{2x - 9}}{{x - 1}} - \dfrac{{3x + 5}}{{x + 2}} = 3\)
Aufgabe 6016
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Produkt einer Polynomfunktion mit einer Logarithmusfunktion
Gegeben ist die Gleichung
\(\left( {4x - 3} \right) \cdot \ln \left( {{x^2} - 5x + 7} \right) = 0\)
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie für \(x \in {\Bbb R}\) Lösungen der Gleichung
Aufgabe 77
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
\(2{x^2} + bx + 18 = 0\)
Für welche b in \({\Bbb R}\) hat diese Gleichung genau eine Lösung?
Aufgabe 78
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
\(4{x^2} - 12x + c = 0\)
Für welche c in \({\Bbb R}\) hat diese Gleichung genau eine Lösung?
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 79
Quadratische Gleichung mit einer Variablen
Gegeben sei folgende quadratische Gleichung:
Berechne:
\(- 4{x^2} - 28x = 48\)
1. Teilaufgabe: Verwende die a-b-c Lösungsformel
2. Teilaufgabe: Verwende die p-q Formel
Aufgabe 4129
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2018 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kugelstoßen - Aufgabe A_268
Teil c
Kugelstoßen ist eine Disziplin bei den Olympischen Sommerspielen. Eine Metallkugel muss so weit wie möglich aus einem Kreis in einen vorgegebenen Aufschlagbereich gestoßen werden. Die Bahnkurve einer gestoßenen Kugel lässt sich näherungsweise durch den Graphen der quadratischen Funktion h beschreiben:
\(h\left( x \right) = - 0,05 \cdot {x^2} + 0,75 \cdot x + 2{\text{ mit }}x \geqslant 0\)
mit
x ... horizontale Entfernung der Kugel von der Abstoßstelle in m
h(x) ... Höhe der Kugel über dem Boden bei der horizontalen Entfernung x in m
1. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie an, in welcher Höhe die Kugel abgestoßen wird.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, in welcher horizontalen Entfernung von der Abstoßstelle die Kugel auf dem Boden aufschlägt.
[1 Punkt]
Aufgabe 1540
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die Gleichung \(a \cdot {x^2} + 10 \cdot x + 25 = 0{\text{ mit }}a \in {\Bbb R}{\text{ und }}a \ne 0\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Bestimmen Sie jene(n) Wert(e) von a, für welche(n) die Gleichung genau eine reelle Lösung hat!
a=
Aufgabe 1555
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Negative Funktionswerte
Gegeben ist die Gleichung einer reellen Funktion f mit \(f\left( x \right) = {x^2} - x - 6\). Einen Funktionswert f(x) nennt man negativ, wenn f(x) < 0 gilt.
Aufgabenstellung:
Bestimmen Sie alle x ∈ ℝ, deren zugehöriger Funktionswert f(x) negativ ist!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 242
Parameter einer quadratischen Funktion
In einem Koordinatensystem ist der Graph einer quadratischen Funktion dargestellt.
Es gilt: \(f\left( x \right) = a{x^2} + bx + c\) mit b=0 und \({\text{a}}{\text{, b}}{\text{, c }} \in {\Bbb R}\)
Aufgabenstellung:
Ermittle die Werte der Parameter a und c. Die dafür erforderlichen Punkte - wähle solche mit ganzzahligen Koordinaten - sind im Koordinatensystem abzulesen.
Aufgabe 1809
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Für \(a \in {\Bbb R}\backslash \left\{ 0 \right\}\) ist die quadratische Gleichung \({\left( {a \cdot x + 7} \right)^2}{\text{ = 25 in }}x \in {\Bbb R}\) gegeben.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie alle \(a \in {\Bbb R}\backslash \left\{ 0 \right\}\) an, für die \(x = - 4\) eine Lösung der gegebenen quadratischen Gleichung ist.
Aufgabe 4121
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfel - Aufgabe B_115
Teil b
Mit Würfeln wird eine Treppe gebaut:
Das obige Bauschema soll auf diese Art fortgesetzt werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie ein rekursives Bildungsgesetz, mit dem man die Anzahl der Würfel in der n-ten Ebene berechnen kann.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie, wie viele Würfel in der 7. Ebene liegen.
[1 Punkt]
Die Anzahl sn der Würfel, die für eine solche Treppe aus n Ebenen insgesamt benötigt wird, kann mithilfe der folgenden Formel bestimmt werden:
\({s_n} = 1,5 \cdot \left( {{n^2} + n} \right)\)
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, aus wie vielen Ebenen eine solche Treppe besteht, wenn man insgesamt 360 Würfel verbaut.
[1 Punkt]