Polynomfunktionen
Hier findest du folgende Inhalte
Formeln
Polynomfunktionen n-ten Grades
Ein Polynom ist die Summe von mehreren Potenzfunktionen. Der Grad der Polynomfunktion „n“ entspricht der höchsten vorkommenden Potenz von der Variablen x. Alle Polynomfunktionen verlaufen durch den Punkt \(P\left( {0\left| {{a_0}} \right.} \right)\). Der Definitionsbereich von Polynomfunktionen ist nicht eingeschränkt, daher gilt: \(D = {\Bbb R}\). Polynomfunktionen werden auch ganzrationale Funktionen genannt.
\(f\left( x \right) = {a_n} \cdot {x^n} + {a_{n - 1}} \cdot {x^{n - 1}} + ... + {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0}\)
\(f\left( x \right) = \sum\limits_{i = 0}^n {{a_i} \cdot {x^i}} \)
\(f\left( x \right) = c \cdot \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \cdot ... \cdot \left( {x - {x_n}} \right){\text{ wobei }}{{\text{x}}_n}{\text{ die n Nullstellen sind}}\)
wobei:
\(\eqalign{ & {a_n},{a_{n - 1}},...,{a_1},{a_0} \cr & n \in N;\,\,\,\,\,{a_i} \in {\Bbb R};\,\,\,\,\,{a_n} \ne 0 \cr} \) | Koeffizienten |
ai | i-ter Koeffizient |
n | höchste Potenz |
\({a_2} \cdot {x^2}\) | quadratisches Glied |
\({a_1} \cdot x\) | lineares Glied |
\({a_0}\) | konstantes Glied |
Die wichtigsten Polynomfunktionen:
n=0:
konstante Funktion
\(f\left( x \right) = {a_0}\)
- 0 oder bei f(x)== unendlich viele Nullstellen
- 0 Extremstellen
- 0 Wendestellen
- Typischer Graph verläuft parallel zur x-Achse
n=1:
lineare Funktion
\(f\left( x \right) = {a_1} \cdot x + {a_0} = k \cdot x + d\)
- 1 Nullstelle
- 0 Extremstellen
- 0 Wendestellen
- Typischer Graph ist eine Gerade, welche die x und die y-Achse schneidet
n=2:
quadratische Funktion bzw. Parabel
\(f\left( x \right) = {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0} = a \cdot {x^2} + b \cdot x + c\)
- 0, 1 oder 2 Nullstellen
- 1 Extremstelle, bei: \(x = - \dfrac{{{a_1}}}{{2{a_2}}}{\text{ für }}{{\text{a}}_2} \ne 0\)
- 0 Wendestelle
- Typischer Graph ist eine Parabel
Die quadratische Funktion setzt sich aus einem quadratischen, einem linearen und einem konstanten Glied zusammen.
- a > 0 → Graph noch oben offen (U-förmig), d.h. der Scheitelpunkt der Parabel ist ein Tiefpunkt
- a < 0 → Graph nach unten offen, d.h. der Scheitelpunkt der Parabel ist ein Hochpunkt
- Der Faktor b bewirkt eine Schiebung in x und y-Richtung.
- b = 0 → Der Scheitelpunkt der Parabel liegt auf der y-Achse. Wo auf der y-Achse der Scheitelpunkt liegt, hängt dann nur von c ab
- b = 0 und c = 0 → Scheitelpunkt der Parabel liegt im Ursprung vom Koordinatensystem
- Der Faktor c bewirkt ausschließlich eine Verschiebung noch oben (c>0) oder nach unten (c<0)
n=3:
kubische Funktion
\(f(x) = {a_3} \cdot {x^3} + {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0}\)
- 1, 2 oder 3 Nullstellen
- 0 oder 2 Extremstellen
- 1 Wendestelle
- Typischer Graph verläuft s-förmig
n=4:
\(f(x) = {a_4} \cdot {x^4} + {a_3} \cdot {x^3} + {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0}\)
- 0 .. 4 Nullstellen
- 1 oder 3 Extremstellen
- 0 oder 2 Wendestellen
- Typischer Graph verläuft w-förmig
Nullstellen: Maximale Anzahl der Nullstellen = Grad der Funktion.
- Wenn „n“ ungerade ist, dann haben sie mindestens eine Lösung in \({\Bbb R}\)
Extremstellen: Maximale Anzahl der Extremstellen = Grad der Funktion n minus 1
Wendepunkte: Maximale Anzahl der Wendepunkte = Grad der Funktion n minus 2
- \(n \geqslant 3\) und n gerade: 0, 2, 4,.. Wendestellen
- \(n \geqslant 3\) und n ungerade: mindestens 1 Wendestelle
konstantes Glied: Das konstante Glied erhält man immer an der Stelle x=0. Daher kann man es aus einem Graph auf der y-Achse (\(P\left( {0\left| {{a_n}} \right.} \right)\)) direkt ablesen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Taylorpolynom
Das Taylorpolynom bietet die Möglichkeit eine komplizierte Funktion f(x), an einer vorgegebenen Stelle x0 durch eine Polynomfunktion zu approximieren. Man spricht dann von einem „Taylor-Polynom n-ten Grades an der Entwicklungsstelle x0 “.
\(\eqalign{ & f\left( x \right) \approx \cr & f\left( {{x_0}} \right) + \dfrac{{f'\left( {{x_0}} \right)}}{{1!}} \cdot \left( {x - {x_0}} \right) + \dfrac{{f''\left( {{x_0}} \right)}}{{2!}} \cdot {\left( {x - {x_0}} \right)^2} + ... + \dfrac{{{f^{\left( n \right)}}\left( {{x_0}} \right)}}{{n!}} \cdot {\left( {x - {x_0}} \right)^n} = \cr & = \sum\limits_{i = 0}^n {\dfrac{{{f^{\left( i \right)}}\left( {{x_0}} \right)}}{{i!}}} {\left( {x - {x_0}} \right)^i} \cr}\)
Den Fehler, der bei der Näherung durch das Taylorpolynom gemacht wurde, kann man mit Hilfe der Formeln von Lagrange oder Cauchy abschätzen. Die beiden Formeln für das Restglied \({R_{n,{x_0}}}\left( x \right)\) d.h. für den Fehler des n-ten Taylorpolynoms um den Entwicklungspunkt x0 an der Stelle x lauten:
nach Lagrange: \({R_{n,{x_0}}}\left( x \right) = \dfrac{{{f^{\left( {n + 1} \right)}}\left( c \right)}}{{\left( {n + 1} \right)!}} \cdot {\left( {x - {x_0}} \right)^{\left( {n + 1} \right)}}\,\,\,\,\,{\text{wobei}}\,\,\,c \in \left[ {{x_0},x} \right]\)
nach Cauchy: \({R_{n,{x_0}}}\left( x \right) = \dfrac{{{f^{\left( {n + 1} \right)}}\left( c \right)}}{{n!}} \cdot {\left( {x - c} \right)^{\left( n \right)}} \cdot \left( {x - {x_0}} \right)\,\,\,\,\,{\text{wobei}}\,\,\,c \in \left[ {{x_0},x} \right]\)