Indirekt proportionale Funktion
Hier findest du folgende Inhalte
Formeln
Darstellung von Funktionen
Unter einer Funktion versteht man die eindeutige Zuordnung von jedem Element x der Definitionsmenge zu genau einem Element y der Wertemenge. Unter einer reellen Funktion versteht man die Abbildung von reellen Zahlen der Definitionsmenge auf reelle Zahlen der Wertemenge.
\(f:{D_f} \to {W_f}\,\,\,{\text{mit}}\,\,\,x \in {D_f}\,\,\,{\text{und}}\,\,\,y \in {W_f}\)
Es gibt mehrere gängige Schreibweisen für Funktionsgleichungen
\(f:x \to 2{x^3}\)
\(f\left( x \right) = 2{x^3}\)
\(y = 2{x^3}\)
Funktionsgleichung
Unter einer Funktionsgleichung versteht man eine mathematische Vorschrift, die angibt, wie man aus einem gegebenen x-Wert den zugehörigen y-Wert errechnet. Dabei ist y abhängig davon, welchen Wert x man in die Funktionsgleichung einsetzt. Die Funktionsgleichung stellt die Abbildung der Werte aus der Definitionsmenge Df auf die Wertemenge Wf in Form einer Gleichung dar.
\(f:{\Bbb R} \to {\Bbb R};\,\,\,y = f\left( x \right)\)
Daher nennt man
- y die abhängige Variable bzw. den Funktionswert
- x die unabhängige Variable bzw. das Funktionsargument
Typen wichtiger Funktionsgleichungen
Konstante Funktion | \(f\left( x \right) = c\) |
Direkt proportionale Funktion sie sind für d=0 eine Untermenge der linearen Funktionen |
\(f\left( x \right) = k \cdot x\) |
Lineare Funktion | \(f\left( x \right) = k \cdot x + d\) |
Quadratische Funktion (Parabel) | \(f\left( x \right) = a \cdot {x^2} + b \cdot x + c\) |
Indirekt proportionale Funktion (Hyperbel) sie sind für negative n eine Untermenge der Potenzfunktionen |
\(f\left( x \right) = \dfrac{c}{{{x^n}}} = c \cdot {x^{ - n}}\) |
Potenzfunktion | \(f\left( x \right) = c \cdot {x^n}\) |
Wurzelfunktion | \(f\left( x \right) = \root n \of x = {x^{\dfrac{1}{n}}}\) |
Exponentialfunktion | \(\begin{array}{l} f\left( x \right) = c \cdot {a^x}\\ f\left( x \right) = c \cdot {e^x} \end{array}\) |
Logarithmusfunktion | \(f\left( x \right) = {}^a\log x\) |
Periodische Funktion | \(f\left( {x + T} \right) = f\left( x \right)\) |
Polynomfunktion | \(f\left( x \right) = {a_n} \cdot {x^n} + {a_{n - 1}} \cdot {x^{n - 1}} + ... + {a_1} \cdot x + {a_0}\) |
uvm. |
Graph einer Funktion
Jedem Wert auf der x-Achse wird über die Funktion ein Punkt auf der y-Achse zugeordnet. Die Menge aller Punkte einer Funktion f(x) mit den Koordinaten (x|y=f(x)) bilden eine Kurve in der Gaus`schen Ebene, den sogenannten Graphen der Funktion.
\(y = f\left( x \right)\)
Geometrische Darstellung: Trägt man die unabhängige Variable x auf der x-Achse und die abhängige Variable y=f(x) auf der y-Achse auf, erhält man den Graph als eine grafische Darstellung der Funktion in Form einer Kurve.
Wertetabelle einer Funktion
Trägt man in einer 2-spaltigen Tabelle in der 1. Spalte die x-Werte gemäß der Definitionsmenge Df ein und in der 2. Spalte die y=f(x) Werte gemäß der Wertemenge Wf, so erhält man Zahlenpaare, die die Zeilen der Wertetabelle bilden.
x | y=f(x) |
x1 | f(x1) |
x2 | f(x2) |
... | ... |
xi | f(xi) |
Mengendiagramm einer Funktion
Grafische Gegenüberstellung von Definitionsmenge und Wertemenge einer Funktion, wobei die Wertepaare durch Pfeile mit einander verbunden werden
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Gebrochenrationale Funktion
Gebrochenrationale Funktionen haben sowohl im Zähler als auch im Nenner ein Polynom.
\(f\left( x \right) = \dfrac{{p\left( x \right)}}{{q\left( x \right)}}\)
- Echt gebrochenrationale Funktion: Der Grad vom Zählerpolynom ist kleiner als der Grad vom Nennerpolynom. Ein Beispiel hierfür sind die Hyperbeln.
- Unecht gebrochenrationale Funktion: Der Grad vom Zählerpolynom ist größer oder gleich als der Grad vom Nennerpolynom.
Hyperbel n-ten Grades
Bei Hyperbeln n-ten Grades sind die Funktionswerte f(x) zu den Potenzen der Argumente x indirekt proportional. Der Graph der Funktion ist eine Hyperbel. Man bezeichnet die Funktion auch als Reziprokfunktion. Achtung: unter "hyperbolischen" Funktionen versteht man spezielle Exponentialfunktionen.
\(\eqalign{ & f\left( x \right) = \dfrac{c}{{{x^n}}} = c \cdot {x^{ - n}} \cr & n \in {{\Bbb N}_g} \cr}\)
Hyperbeln vom Grad n, wenn n gerade ist
Graph liegt symmetrisch zur y-Achse
Hyperbeln vom Grad n, wenn n ungerade ist
Graph liegt symmetrisch zur x-Achse
Aufgaben
Aufgabe 1102
AHS - 1_100 & Lehrstoff: FA 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Indirekte Proportionalität
t ist indirekt proportional zu x und y².
- Aussage 1: \(t = \dfrac{z}{{3 \cdot x \cdot {y^2}}}\)
- Aussage 2: \(t = \dfrac{{x \cdot z}}{{3 \cdot {y^2}}}\)
- Aussage 3: \(t = \dfrac{{x \cdot {y^2}}}{{3 \cdot z}}\)
- Aussage 4: \(t = \dfrac{{3 \cdot z}}{{x \cdot {y^2}}}\)
- Aussage 5: \(t = x \cdot {y^2} \cdot z\)
Aufgabenstellung:
Welche der angegebenen Formeln beschreiben diese Abhängigkeiten? Kreuzen Sie die beiden zutreffenden Formeln an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4197
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil c
Bei der Besteigung eines bestimmten Berges ist die Gesamtgehzeit indirekt proportional zu dem durchschnittlichen überwundenen Höhenunterschied in Metern pro Stunde (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung ab, welcher Höhenunterschied bei dieser Besteigung insgesamt überwunden werden muss.
[1 Punkt]
Aufgabe 1262
AHS - 1_262 & Lehrstoff: FA 2.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Celsius - Fahrenheit
Temperaturen werden bei uns in °C (Celsius) gemessen; in einigen anderen Ländern ist die Messung in °F (Fahrenheit) üblich. Zwischen der Temperatur x in °C und der Temperatur f(x) in °F besteht folgender Zusammenhang: \(f\left( x \right) = \dfrac{9}{5} \cdot x + 32\)
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Die Temperatur in °C und jene in °F sind zueinander ______1_______ , da ______2_______ .
1 | |
direkt proportional | A |
indirekt proportional | B |
nicht proportional | C |
2 | |
es beispielsweise bei 320 °F genau halb so viele °C hat | I |
eine Erwärmung auf z. B. dreimal so viele °C weder bedeutet, dass die Temperatur auf dreimal so viele °F ansteigt, noch dass sie auf ein Drittel absinkt | II |
eine Zunahme um 1 °C immer eine Erwärmung um gleich viele °F bedeutet | III |
Aufgabe 1268
AHS - 1_268 & Lehrstoff: FA 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer indirekten Proportionalität
Gegeben ist eine Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^z} + b{\text{ wobei }}z \in {\Bbb Z}{\text{ und }}a,b \in {\Bbb R}\)
Aufgabenstellung:
Welche Werte müssen die Parameter b und z annehmen, damit durch f ein indirekt proportionaler Zusammenhang beschrieben wird? Ermitteln Sie die Werte der Parameter b und z!
Aufgabe 1117
AHS - 1_117 & Lehrstoff: FA 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ideales Gas
Die Abhängigkeit des Volumens V vom Druck p kann durch eine Funktion beschrieben werden. Bei gleichbleibender Temperatur ist das Volumen V eines idealen Gases zum Druck p indirekt proportional. 200 cm³ eines idealen Gases stehen bei konstanter Temperatur unter einem Druck von 1 bar.
Aufgabenstellung:
Geben Sie den Term der Funktionsgleichung an und zeichnen Sie deren Graphen!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1791
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. September 2020 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Druck und Volumen eines idealen Gases
Bei gleichbleibender Temperatur sind der Druck und das Volumen eines idealen Gases zueinander indirekt proportional. Die Funktion p ordnet dem Volumen V den Druck p(V) zu (V in m3, p(V) in Pascal).
Aufgabenstellung:
Geben Sie p(V) mit V ∈ ℝ+ an, wenn bei einem Volumen von 4 m3 der Druck 50 000 Pascal beträgt.