BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.9
Anwendungsbezogene Problemstellungen mit geeigneten Funktionstypen (lineare Funktion, Polynomfunktion bis zum Grad 3 und Exponentialfunktion) modellieren. Vorausgesetzt wird die Kenntnis des Zusammenhangs zwischen Kosten-, Erlös- und Gewinnfunktion sowie grundlegender Begriffe der Zinseszinsrechnung.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4006
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Medikamentenabbau - Aufgabe A_251
Teil a
Der Abbau von Medikamenten im Körper kann näherungsweise durch exponentielle Modelle beschrieben werden. Die nachstehende Tabelle gibt an, welche Menge N(t) eines bestimmten Medikaments zur Zeit t im Körper vorhanden ist:
t in h | 0 | 2 | 4 |
N(t) in mg | 100 | 60 | 36 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie, warum die in der Tabelle angegebenen Daten die Beschreibung des Medikamentenabbaus durch ein exponentielles Modell nahelegen. [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung derjenigen Exponentialfunktion N, die diesen Medikamentenabbau beschreibt. [1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie diejenige Menge des Medikaments, die zur Zeit t = 3 h im Körper vorhanden ist. [1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4047
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lampenproduktion - Aufgabe B_419
Teil b
Die Kosten für die Produktion der Pendelleuchte Ecos lassen sich näherungsweise durch eine Kostenfunktion K beschreiben: \(K\left( x \right) = 0,05 \cdot {x^2} + 3 \cdot x + 155\)
mit
x | Anzahl der produzierten ME |
K(x) | Kosten bei x produzierten ME in GE |
Die Pendelleuchte wird zu einem fixen Preis von 9 GE/ME verkauft.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Gewinnfunktion.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Gewinngrenzen.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den maximalen Gewinn.
[1 Punkt]
Aufgabe 4082
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flussläufe und Pegelstände -Aufgabe A_266
Teil b
Auf einem annähernd geradlinig verlaufenden Abschnitt eines Flusses soll das Flussbett verbreitert und vertieft werden. In der nachstehenden Abbildung ist das Flussbett im Querschnitt dargestellt.
mit
f | Profillinie des ursprünglichen Flussbetts |
h | Profillinie des neuen Flussbetts |
f und h sind Polynomfunktionen 2. Grades mit zur y-Achse symmetrischen Graphen.
Ein Teilstuck des Flussbetts mit der Lange L (in m) wird ausgebaggert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie unter Angabe der entsprechenden Einheit, was mit dem folgenden Ausdruck im gegebenen Sachzusammenhang berechnet wird:
\(2 \cdot \left| {\int\limits_0^{17,5} {h\left( x \right)\,\,dx - \int\limits_0^{15} {f\left( x \right)\,\,dx} } } \right| \cdot L\)
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe der obigen Abbildung eine Gleichung der Funktion h.
[1 Punkt]
Aufgabe 4212
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kochzeit von Eiern - Aufgabe A_289
Teil a
Der Physiker Werner Gruber hat mit Hühnereiern experimentiert. Er hat festgestellt, dass die Kochzeit von Eiern unter anderem abhängt von:
- dem Durchmesser d des Eies (siehe nebenstehende Abbildung)
- der Lagertemperatur x vor dem Kochen
Datenquelle: Gruber, Werner: Die Genussformel. Kulinarische Physik. Salzburg: Ecowin 2008, S. 79 – 84.
Ein Ei soll weich gekocht werden. Die Kochzeit kann in Abhängigkeit vom Durchmesser d unter bestimmten Bedingungen näherungsweise durch die quadratische Funktion W beschrieben werden:
\(W\left( d \right) = a \cdot {d^2}\)
d | Durchmesser des Eies in mm |
W(d) | Kochzeit bei einem Durchmesser d in min |
a | positiver Parameter |
Bei einem Durchmesser von 45 mm ergibt sich eine Kochzeit von 5 min.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Parameter a.
[1 Punkt]
Zwei Eier mit unterschiedlichen Durchmessern werden weich gekocht. Der Durchmesser von Ei B ist um 10 % größer als der Durchmesser von Ei A.
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass die Kochzeit von Ei B um mehr als 10 % länger ist als die Kochzeit von Ei A.
[1 Punkt]
Aufgabe 4216
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahnen - Aufgabe A_290
Teil b
Bei den meisten Standseilbahnen gibt es in der Mitte der Strecke eine Ausweichstelle, bei der der talwärts fahrende Wagen dem bergwärts fahrenden Wagen ausweichen kann. In der nachstehenden Abbildung ist eine solche Ausweichstelle modellhaft dargestellt.
Der Funktionsgraph von f schließt an den Stellen 0 und 3 knickfrei an die eingezeichneten Geradenstücke an. „Knickfrei“ bedeutet, dass die Funktionen an denjenigen Stellen, an denen ihre Graphen aneinander anschließen, den gleichen Funktionswert und die gleiche Steigung haben. Für die Funktion f gilt:
\(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
x, f(x) … Koordinaten in m
Die Koeffizienten a, b, c und d können mithilfe eines linearen Gleichungssystems berechnet werden. Der Ansatz für zwei der benötigten Gleichungen lautet:
\(\begin{array}{l} Gl.1:\,\,\,27 \cdot a + 9 \cdot b + 3 \cdot c + d = {\rm{Zah}}{{\rm{l}}_1}\\ Gl.2:\,\,\,27 \cdot a + 6 \cdot b + c = {\rm{Zah}}{{\rm{l}}_2} \end{array}\)
1. Teilaufgabe - Bearbeitungszeit 11:20
Vervollständigen Sie mithilfe der obigen Abbildung die beiden Gleichungen, indem Sie jeweils die fehlende Zahl in das dafür vorgesehene Kästchen schreiben. [
2 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung den Wert des Koeffizienten d ab.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4109
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil a
Die Preise von Baugrundstücken sind in den letzten Jahren erheblich gestiegen. Herr Pfeifer hat ein Grundstück um € 228.000 gekauft. Nach der Umwidmung in ein Baugrundstück kann er es 4 Jahre später um € 753.000 verkaufen.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den mittleren jährlichen Zinssatz des eingesetzten Kapitals ohne Berücksichtigung von Spesen, Gebühren und Steuern.
[1 Punkt]
Aufgabe 4161
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C - Aufgabe A_281
Teil a
Der Vitamin-C-Gehalt eines Apfels nimmt nach der Ernte exponentiell ab. Alle 4 Wochen nimmt der Vitamin-C-Gehalt um 20 % bezogen auf den Wert zu Beginn dieser 4 Wochen ab. Ein bestimmter Apfel hat bei der Ernte einen Vitamin-C-Gehalt von 18 mg. Der Vitamin-C-Gehalt dieses Apfels in Milligramm soll in Abhängigkeit von der Zeit t in Wochen beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Funktion. Wählen Sie t = 0 für den Zeitpunkt der Ernte.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Vitamin-C-Gehalt dieses Apfels 36 Wochen nach der Ernte.
[1 Punkt]
Aufgabe 4170
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenaufgang - Aufgabe A_284
Teil a
Während der Morgendämmerung wird es kontinuierlich heller. Die Beleuchtungsstärke bei klarem Himmel kann an einem bestimmten Ort in Abhängigkeit von der Zeit näherungsweise durch folgende Exponentialfunktion E beschrieben werden:
\(E\left( t \right) = 80 \cdot {a^t}{\text{ mit }} - 60 \leqslant t \leqslant 30\)
- t ... Zeit in min, wobei t = 0 der Zeitpunkt des Sonnenaufgangs ist
- E(t) ... Beleuchtungsstärke zur Zeit t in Lux
- a ... Parameter
1. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Zahl 80 in der Funktionsgleichung von E im gegebenen Sachzusammenhang.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Die Beleuchtungsstärke verdoppelt sich alle 5 min. Berechnen Sie den Parameter a.
[1 Punkt]
Aufgabe 4186
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Luftverschmutzung - Aufgabe A_075
Teil b
In Linz ist die Staubbelastung der Luft im Zeitraum von 1985 bis 1996 stark zurückgegangen. Im Jahr 1985 wurde die Luft in Linz mit 11 000 t Staub belastet. Im Jahr 1996 waren es nur noch 3 000 t. Im Zuge eines Forschungsprojekts hat man erkannt, dass die Funktion S, die die Staubbelastung S(t) in Tonnen in Abhängigkeit von der Zeit t in Jahren angibt, annähernd linear ist.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe der obigen Daten eine Gleichung dieser linearen Funktion. Wählen Sie t = 0 für das Jahr 1985.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Funktionswert für das Jahr 2001 gemäß diesem Modell.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie, warum der berechnete Funktionswert für das Jahr 2001 im gegebenen Sachzusammenhang nicht sinnvoll ist.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4239
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rund um die Heizung - Aufgabe A_140
Teil b
Eine Heizung beginnt um 15 Uhr, einen Wohnraum zu erwärmen. Ab diesem Zeitpunkt kann die Raumtemperatur durch die Funktion T beschrieben werden.
\(T\left( t \right) = 24 - 6 \cdot {e^{ - \lambda \cdot t}}\)
- t … Heizdauer in h mit t = 0 für 15 Uhr
- T(t) ... Raumtemperatur nach der Heizdauer t in °C
1. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie die Raumtemperatur um 15 Uhr.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Um 16 Uhr beträgt die Raumtemperatur 21 °C.
Berechnen Sie den Parameter λ.
[1 Punkt]
Aufgabe 4240
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kühe auf der Weide - Aufgabe A_141
Teil a
In der nachstehenden Abbildung ist eine Weide modellhaft dargestellt. Die obere Begrenzungslinie kann mithilfe einer Funktion f beschrieben werden. Die anderen drei Begrenzungslinien verlaufen geradlinig.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe von f eine Formel zur Berechnung des Flächeninhalts A dieser Weide.
A =
[1 Punkt]
Für die Funktion f gilt:
\(f\left( x \right) = a \cdot {x^2} + b \cdot x + 52\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie unter Verwendung der in der obigen Abbildung angegebenen Koordinaten ein Gleichungssystem zur Berechnung der Koeffizienten a und b.
[1 Punkt]
Aufgabe 4247
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pflanzenwachstum - Aufgabe A_292
Teil c
Die Höhe einer bestimmten Pflanze wird täglich zu Mittag gemessen. Zu Beobachtungsbeginn hat die Pflanze die Höhe H0. Sie wachst um 0,5 % pro Tag bezogen auf die Höhe des jeweils vorangegangenen Tages.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe von H0 eine Formel zur Berechnung der Höhe H dieser Pflanze 10 Tage nach Beobachtungsbeginn.
H =
[1 Punkt]