Prozente und Promille
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4020
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_412
Teil a
Aus nostalgischen Gründen werden in einem kleinen Weingut Trauben der Sorte Welschriesling mit einer renovierten Handpresse gepresst. Der zylinderförmige Korb, in dem die Weintrauben gepresst werden, hat dabei die folgenden Abmessungen: Höhe h = 80 cm, Innenradius r = 42 cm.
1. Teilaufgabe - Bearbeitungszeit 11:20
Überprüfen Sie nachweislich mithilfe der Volumensformel des Drehzylinders, ob die nachstehenden Aussagen jeweils richtig sind.
[2 Punkte]
- Aussage 1: „Wäre die zylinderförmige Presse 1,6 m hoch (bei gleichem Durchmesser), so würde sie das doppelte Volumen fassen.“
- Aussage 2: „Hätte die zylinderförmige Presse einen Innenradius von 84 cm (bei gleicher Höhe), so würde sie das doppelte Volumen fassen.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Der Korb ist zu 95 % mit Trauben gefüllt. Aus diesen Trauben werden 350 Liter Traubenmost gepresst.
Berechnen Sie den prozentuellen Anteil des Traubenmosts am ursprünglichen Volumen der Trauben.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4011
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohmilchproduktion - Aufgabe A_252
Teil b
In der nachstehenden Tabelle ist die durchschnittliche Jahresmilchleistung pro Kuh in Kilogramm (kg) für einige ausgewählte europäische Länder im Jahr 2012 angegeben.
Land | durchschnittliche Jahresmilchleistung pro Kuh in kg |
Deutschland | 7 280 |
Dänemark | 8 701 |
Italien | 5 650 |
Österreich | 6 418 |
Rumänien | 3 429 |
Slowakei | 6 501 |
Tschechien | 7 705 |
Ungarn | 7 184 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, um wie viel Prozent die durchschnittliche Jahresmilchleistung pro Kuh in Dänemark höher als jene in Rumänien war.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Diese Daten sind, mit Ausnahme der durchschnittlichen Jahresmilchleistung pro Kuh in Tschechien, im nachstehenden Diagramm dargestellt.
Zeichnen Sie im folgenden Diagramm die fehlende Säule für Tschechien ein.
[1 Punkt]
Aufgabe 4233
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. Jänner 2018 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Genfer See - Aufgabe A_222
Teil a
Der Jet d’eau ist ein Springbrunnen im Genfer See. Die Wasserfontäne des Springbrunnens erreicht eine maximale Höhe von 140 Metern. In einem vereinfachten Modell kann die Höhe eines Wasserteilchens über der Wasseroberfläche in Abhängigkeit von der Zeit durch die Funktion h beschrieben werden:
\(h\left( t \right) = - 4,9 \cdot {t^2} + 55,6 \cdot t{\text{ mit }}t \geqslant 0\)
mit
t … Zeit nach dem Austritt eines Wasserteilchens in s
h(t) … Höhe des Wasserteilchens über der Wasseroberfläche zur Zeit t in m
In diesem Modell wird der Luftwiderstand nicht berücksichtigt. Daher weicht die mithilfe der Modellfunktion h ermittelte maximale Höhe deutlich von der angegebenen maximalen Höhe ab.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, um wie viel Prozent die mithilfe der Modellfunktion h ermittelte maximale Höhe über der angegebenen maximalen Höhe von 140 Metern liegt.
[1 Punkt]
Aufgabe 4071
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil c
Die nachstehende Tabelle zeigt die Anzahl der Hausbesuche pro Jahr durch mobile Dienste im Rahmen der Altenpflege in Oberösterreich sowie deren prozentualen Anstieg jeweils im Vergleich zur Anzahl 2 Jahre davor.
Jahr |
Anzahl der Hausbesuche pro Jahr |
prozentualer Anstieg (gerundet) |
1994 | 498 086 | |
1996 | 589 168 | 18,3 % |
1998 | 802 146 | 36,1 % |
2000 | 1 017 793 | 26,9 % |
2002 | 1 176 665 | 15,6 % |
2004 | 1 360 543 | 15,6 % |
Der prozentuale Anstieg der Anzahl der Hausbesuche pro Jahr betrug sowohl von 2000 auf 2002 als auch von 2002 auf 2004 jeweils rund 15,6 %.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie in Worten, warum sich die absolute Änderung der Anzahl der Hausbesuche pro Jahr von 2000 auf 2002 von jener von 2002 auf 2004 unterscheidet, obwohl die prozentualen Anstiege in den jeweiligen Zeitintervallen gleich sind.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis der Berechnung \(\dfrac{{1360543 - 498086}}{{2004 - 1994}} \approx 86246\) im gegebenen Sachzusammenhang.
[1 Punkt]
Aufgabe 4053
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Spam - Aufgabe B_418
Teil a
Als Spam werden unerwünscht zugestellte E-Mails bezeichnet. Der nachstehenden Tabelle kann man die Entwicklung der Anzahl der weltweit täglich versendeten Spam-Mails in Milliarden entnehmen.
Beginn des Jahres | Anzahl der weltweit täglich versendeten Spam-Mails in Milliarden |
2010 | 62 |
2011 | 42 |
2012 | 30 |
Die Anzahl der Spam-Mails kann näherungsweise durch die Funktion S beschrieben werden: \(S\left( t \right) = 50 \cdot {0,6^t} + 12\)
mit:
t | Zeit in Jahren ab 2010, d. h. für den Beginn des Jahres 2010 gilt: t = 0 |
S(t) | Anzahl der weltweit täglich versendeten Spam-Mails zur Zeit t in Milliarden |
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass die Funktion S die Anzahl der weltweit täglich versendeten Spam-Mails für den Beginn des Jahres 2012 richtig beschreibt.
[1 Punkt]
Die Funktion S kann auch in der Form \(S\left( t \right) = 50 \cdot {e^{k \cdot t}} + 12\) angegeben werden.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie k.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie das Ergebnis der Berechnung \(\dfrac{{S\left( 5 \right) - S\left( 3 \right)}}{{S\left( 3 \right)}} \approx - 0,30\) im gegebenen Sachzusammenhang.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4215
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahnen - Aufgabe A_290
Teil a
Die Wägen von Standseilbahnen fahren auf Schienen und können große Steigungen bewältigen. Eine bestimmte Standseilbahn hat eine konstante Steigung von 40 %. Der Streckenverlauf dieser Bahn soll im unten stehenden Koordinatensystem dargestellt werden. Die beiden Achsen des Koordinatensystems haben die gleiche Skalierung. Die Talstation der Bahn liegt im Koordinatenursprung. Nur einer der Punkte A, B, C, D und E kommt als Bergstation der Bahn infrage.
- Aussage 1: A
- Aussage 2: B
- Aussage 3: C
- Aussage 4: D
- Aussage 5: E
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie denjenigen Punkt an, der als Bergstation infrage kommt.
[1 aus 5] [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, welchen Höhenunterschied ein Wagen dieser Bahn überwindet, wenn er von der Talstation bis zur Bergstation eine Fahrstrecke von 180 m zurücklegt.
[1 Punkt]
Aufgabe 4217
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahnen - Aufgabe A_290
Teil c
Der Umsatz des Weltmarktführers im Seilbahnbau betrug im Geschäftsjahr 2015/16 rund 834 Millionen Euro und lag somit um 5,04 % über dem Umsatz im Geschäftsjahr 2014/15.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Umsatz im Geschäftsjahr 2014/15 in Millionen Euro.
[1 Punkt]
Aufgabe 4194
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil d
Die Schüler/innen einer Schule wurden nach ihren Lieblingsfarben gefragt. In der nachstehenden Abbildung ist dargestellt, wie viel Prozent der Befragten die jeweilige Farbe als Lieblingsfarbe genannt haben.
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie, woran man erkennen kann, dass man auch mehr als eine Lieblingsfarbe nennen durfte.
[1 Punkt]
Aufgabe 4201
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baumhaus - Aufgabe A_116
Teil b
Die Fenster des Baumhauses sollen eine spezielle Form haben (siehe grau markierte Flache in der nachstehenden Abbildung).
Die obere Begrenzungslinie des Fensters kann näherungsweise durch den Graphen der Funktion f beschrieben werden.
\(f\left( x \right) = - 0,003 \cdot {x^3} + 0,164 \cdot {x^2} - 2,25 \cdot x + 40{\text{ mit }}0 \leqslant x \leqslant 40\)
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie, um wie viel Prozent die Fensterfläche in der dargestellten Form kleiner als die Fensterfläche eines quadratischen Fensters mit der Seitenlange 40 cm ist.
[2 Punkte]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4175
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Mathematik-Olympiade - A_066
Die Mathematik-Olympiade ist ein bekannter Wettbewerb für Schüler/innen.
Teil c
Die nachstehende Häufigkeitstabelle zeigt die erreichten Punkteanzahlen der 40 Teilnehmer/innen des Bundeswettbewerbs der Mathematik-Olympiade im Jahr 2016.
erreichte Punkteanzahl | Anzahl der Teilnehmer(innen |
0-8 | 7 |
9-16 | 22 |
17-24 | 9 |
25-32 | 2 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viel Prozent der Teilnehmer/innen mindestens 17 Punkte erreicht haben.
[1 Punkt]
Aufgabe 4185
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Luftverschmutzung - Aufgabe A_075
Teil a
Die Belastung der Luft durch Schwefeldioxid entsteht unter anderem durch Verbrennung von Heizöl und Kohle. Als gesetzliche Obergrenze für den Schwefeldioxidgehalt der Luft gilt ein Tagesmittelwert von \(120\mu g/{m^3}\) . Im Jahr 1986 wurde dieser Wert am „schwarzen Freitag“ in Linz um 857 % überschritten.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Tagesmittelwert des Schwefeldioxidgehalts der Luft in \(\mu g/{m^3}\) an diesem Tag in Linz.
[1 Punkt]
Aufgabe 4238
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rund um die Heizung - Aufgabe A_140
Teil a
Die nachstehende Abbildung zeigt einen waagrecht gelagerten, zylinderförmigen Öltank in der Ansicht von vorne. Der Punkt M ist der Mittelpunkt des dargestellten Kreises mit dem Radius r .
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe von r und α eine Formel zur Berechnung der Füllhöhe h.
h =
[1 Punkt]
Für das Volumen V eines 2 m langen Öltanks gilt:
\(V = {r^2} \cdot \pi \cdot 2\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, um wie viel Prozent das Volumen größer wäre, wenn der Radius um 20 % größer wäre.
[1 Punkt]