Änderungsmaße
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4014
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Bodensee - Aufgabe A_253
Teil b
Der Phosphorgehalt im Bodensee kann im Zeitraum von 1970 bis 2004 näherungsweise durch eine Polynomfunktion f beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe des oben dargestellten Graphen von f die mittlere Änderungsrate des Phosphorgehalts im Zeitintervall [12; 18].
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Dokumentieren Sie in Worten, wie man mittels Differenzialrechnung berechnen kann, wann der Phosphorgehalt am stärksten gesunken ist.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4196
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil b
In der nachstehenden Abbildung ist der Höhenverlauf während einer 3-stündigen Wanderung dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die mittlere Änderungsrate der Seehöhe in Abhängigkeit von der Zeit für die gesamte Wanderung. Geben Sie das Ergebnis mit der zugehörigen Einheit an.
[1 Punkt]
Jemand behauptet: „Nach etwa 1,5 Stunden wurde eine Pause eingelegt. Das erkennt man daran, dass der Graph während der Pause waagrecht verlauft.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie, dass diese Behauptung nicht zwingend richtig sein muss.
[1 Punkt]
Aufgabe 4169
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnverkehr in Österreich - Aufgabe A_283
Teil c
Im nachstehenden Diagramm sind die Fahrgastzahlen der Österreichischen Bundesbahnen für die Jahre 2010 bis 2014 dargestellt.
Datenquelle: Agentur für Passagier- und Fahrgastrechte (Hrsg.): Fahrgastrechte-Statistik Bahn 2014, 2016, S. 4.
https://www.apf.gv.at/files/1-apf-Homepage/1g-Publikationen/Fahrgastrec… [22.11.2018].
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Spannweite der angegebenen Fahrgastzahlen in Millionen.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Es wird folgende Berechnung durchgeführt:
\(\dfrac{{235,1 - 209,8}}{{209,8}} \approx 0,12\)
Interpretieren Sie das Ergebnis dieser Berechnung im gegebenen Sachzusammenhang.
[1 Punkt]
Aufgabe 4245
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pflanzenwachstum - Aufgabe A_292
Teil a
Die Entwicklung der Höhe von vier verschiedenen Pflanzen wurde über einen Zeitraum von 20 Tagen beobachtet und lässt sich jeweils näherungsweise durch die Funktion f, g, h bzw. p beschreiben.
- t ... Zeit ab Beobachtungsbeginn in Tagen
- f(t), g(t), h(t), p(t) ... Höhe der entsprechenden Pflanze zur Zeit t in cm
Die nachstehende Abbildung zeigt die Graphen dieser vier Funktionen.
Zur Zeit t = 20 sind diese vier Pflanzen gleich hoch.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der obigen Abbildung die mittlere Änderungsrate der Höhe in Zentimetern pro Tag im Zeitintervall [0; 20].
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Aussagen 1 und 2 jeweils die entsprechende Funktion aus A bis D zu.
[2 zu 4] [1 Punkt]
- Aussage 1: Im Zeitintervall [0; 20] ist die 1. Ableitung streng monoton steigend.
- Aussage 2: Im Zeitintervall [0; 20] ist die 2. Ableitung immer negativ.
- Lösung A: f
- Lösung B: g
- Lösung C: h
- Lösung D:p
Aufgabe 4269
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenlicht und Vitamin D - Aufgabe A_300
Für die Bildung von Vitamin D in der Haut ist Sonnenlicht nötig. Ist der Einfallswinkel der Sonnenstrahlen in der Atmosphäre zu klein, kann kein Vitamin D gebildet werden.
Teil a
Für jeden Tag eines Jahres wird der größte Einfallswinkel der Sonnenstrahlen betrachtet. Für eine bestimmte Stadt ist die zeitliche Entwicklung dieses Winkels als Graph der Funktion S dargestellt.
- t ... Zeit ab Jahresbeginn in Tagen
- S(t) ... größter Einfallswinkel der Sonnenstrahlen zur Zeit t in Grad (°)
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie dasjenige Zeitintervall ab, in dem der größte Einfallswinkel der Sonnenstrahlen mindestens 45° beträgt.
\(\left[ {u;o} \right]\) in Tagen
2. Teilaufgabe - Bearbeitungszeit 5:40
Es wird folgende Berechnung durchgeführt:
\(\dfrac{{S\left( {90} \right) - S\left( 0 \right)}}{{90}} \approx 0,3\)
Interpretieren Sie das Ergebnis dieser Berechnung im gegebenen Sachzusammenhang. Geben Sie dabei die zugehörige Einheit an.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4293
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2016 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gondelbahn auf den Untersberg - A_224
Teil a
In nachstehender Abbildung ist der Verlauf des Tragseils der Gondelbahn von St. Leonhard auf den Untersberg vereinfacht dargestellt.
- x ... horizontaler Abstand von der Talstation in Metern (m)
- y ... Höhe über Meeresniveau in m
Es wird folgende Berechnung durchgeführt:
\(\dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{1776 - 456}}{{2521 - 0}} \approx 0,52\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie, was das Ergebnis im gegebenen Sachzusammenhang bedeutet.
[1 Punkt]
Aufgabe 4299
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2016 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Section-Control - Aufgabe_A226
Section-Control bezeichnet ein System zur Überwachung der Einhaltung von Tempolimits im Straßenverkehr. Dabei wird nicht die Geschwindigkeit an einem bestimmten Punkt gemessen, sondern die mittlere Geschwindigkeit über eine längere Strecke ermittelt.
Teil b
Im nachstehenden Weg-Zeit-Diagramm ist die Fahrt eines Fahrzeuges in einem überprüften Bereich dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die mittlere Geschwindigkeit des Fahrzeugs auf der ersten Weghälfte.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie, dass die mittlere Geschwindigkeit auf der ersten Weghälfte kleiner als die mittlere Geschwindigkeit auf der zweiten Weghälfte ist.
[1 Punkt]
Aufgabe 4323
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gold - Aufgabe A_160
Das Edelmetall Gold gilt als besonders wertvoll, weil es selten vorkommt, leicht zu Schmuck verarbeitet werden kann und sehr beständig ist.
Teil c
Die nachstehende Grafik zeigt die weltweite jährliche Förderung von Gold ab dem Jahr 1900 in Tonnen.
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Grafik ab, in welchem Jahrzehnt die weltweite Förderung absolut am stärksten gestiegen ist.
[1 Punkt]
Aufgabe 4474
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leuchtdioden - Aufgabe A_305
Leuchtdioden (LEDs) werden häufig als Beleuchtungsmittel verwendet.
Teil b
Die Lebensdauer von LEDs ist abhängig von der Temperatur am LED-Chip. Auf einer Website ist dieser Zusammenhang grafisch dargestellt (siehe nachstehende Abbildung).
Quelle: https://www.led-studien.de/wp-content/uploads/2015/10/Lebensdauer-nach-… [16.08.2019] (adaptiert).
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die mittlere Änderungsrate der Lebensdauer bei Erhöhung der Temperatur von 140 °C auf 160 °C.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Begründen Sie, warum es sich bei der in der obigen Abbildung dargestellten Kurve nicht um den Graphen einer Funktion handeln kann.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 5670
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Testfahrten – Aufgabe A_326
Auf drei Teststrecken werden Testfahrten mit Autos durchgeführt.
Teil a
Eine bestimmte Testfahrt auf der ersten Teststrecke kann modellhaft durch die nachstehend dargestellte Weg-Zeit-Funktion s1 beschrieben werden.
- t ... Zeit in s
- s1(t) ... zurückgelegter Weg zur Zeit t in m
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die mittlere Geschwindigkeit des Autos auf den letzten 70 m der Testfahrt.
[0 / 1 P.]
Die Weg-Zeit-Funktion s1 setzt sich aus einer linearen Funktion (im Zeitintervall [0; 5]) und einer quadratischen Funktion (im Zeitintervall [5; 10]) zusammen (siehe obige Abbildung).
- An der Stelle t = 5 haben die lineare Funktion und die quadratische Funktion die gleiche Steigung.
- An der Stelle t = 10 hat die quadratische Funktion die Steigung 0.
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen der zugehörigen Geschwindigkeit-Zeit-Funktion v1 ein.
[0 / 1 P.]
Aufgabe 5673
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Jänner 2023 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Feinstaub – Aufgabe A_327
Feinstaub in der Atemluft stellt ein Gesundheitsrisiko dar.
Teil a
An einer Messstelle in Graz wurde an einem bestimmten Tag von 5:00 Uhr bis 13:00 Uhr die Feinstaubbelastung gemessen. Die Funktion f beschreibt näherungsweise die Feinstaubbelastung
in Abhängigkeit von der Zeit.
\(f\left( t \right) = - 1,4 \cdot {t^2} + 11 \cdot t + 47{\text{ mit }}0 \leqslant t \leqslant 8\)
- t ... Zeit in h mit t = 0 für 5:00 Uhr
- f(t) ... Feinstaubbelastung zur Zeit t in μg/m3
1. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie das Ergebnis der nachstehenden Berechnung im gegebenen Sachzusammenhang.
Es gilt:
\(\eqalign{
& {t_1} = 0{\text{h}} \cr
& {{\text{t}}_2} = 4{\text{h}} \cr
& \dfrac{{f\left( {{t_2}} \right) - f\left( {{t_1}} \right)}}{{{t_2} - {t_1}}} = 5,4 \cr} \)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie diejenige Uhrzeit, zu der f‘(t) =–10 gilt.
[0 / 1 P.]