Mathematik Zentralmatura BHS - Jänner 2020 - kostenlos vorgerechnet
Die Beispiele aus diesem BHS Maturatermin werden vorgerechnet und verständlich erklärt.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4203
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil a
Die Wahrscheinlichkeit, dass auf einem bestimmten Abschnitt der Westautobahn ein Fahrzeug mit überhöhter Geschwindigkeit unterwegs ist, beträgt 4 %. Eine Zufallsstichprobe von 1 500 Fahrzeugen wird überprüft. Die binomialverteilte Zufallsvariable X gibt die Anzahl derjenigen Fahrzeuge an, die dort mit überhöhter Geschwindigkeit unterwegs sind.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung der Wahrscheinlichkeit, dass genau a Fahrzeuge dieser Zufallsstichprobe mit überhöhter Geschwindigkeit unterwegs sind. P(X = a)
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4204
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil b
Es wird angenommen, dass die Geschwindigkeiten der Fahrzeuge an einer bestimmten Stelle, an der die erlaubte Höchstgeschwindigkeit 50 km/h beträgt, annähernd normalverteilt sind. In der nachstehenden Abbildung ist der Graph der zugehörigen Dichtefunktion dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit, dass die Geschwindigkeit mehr als 15 km/h über der erlaubten Höchstgeschwindigkeit von 50 km/h liegt.
[1 Punkt]
Aufgabe 4205
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil c
Der nachstehend dargestellte Graph zeigt annähernd den Geschwindigkeitsverlauf eines im Stadtgebiet fahrenden Autos.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie näherungsweise die Länge des im Zeitintervall [0; 45] zurückgelegten Weges.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie die Höchstgeschwindigkeit des Autos ab. Geben Sie das Ergebnis in km/h an.
[1 Punkt]
Aufgabe 4188
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flüssigkeitsbehälter - Aufgabe A_063
Teil a
Das nachstehend abgebildete zylindrische Gefäß mit der Höhe h = 16 dm fasst bei Befüllung bis 10 cm unter den oberen Rand 1 200 L.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Durchmesser d des Gefäßes.
[1 Punkt]
Aufgabe 4190
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flüssigkeitsbehälter - Aufgabe A_063
Teil c
Ein Flüssigkeitsbehälter wird befüllt. Dabei kann die Flüssigkeitsmenge im Flüssigkeitsbehälter in Abhängigkeit von der Füllzeit näherungsweise durch die Funktion F beschrieben werden.
\(F\left( t \right) = 1100 - 800 \cdot {e^{ - 0,02 \cdot t}}\)
t ... Füllzeit in min
F(t) ... Flüssigkeitsmenge im Flüssigkeitsbehälter zur Füllzeit t in L
Die Gleichung \(900 = 1100 - 800 \cdot {e^{ - 0,02 \cdot t}}\) wird nach t gelöst.
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie die Bedeutung der Lösung im gegebenen Sachzusammenhang.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4191
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil a
Die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person Rosa als Lieblingsfarbe nennt, beträgt 13 %. 25 zufällig ausgewählte Personen werden nach ihrer Lieblingsfarbe gefragt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass genau 3 der 25 Personen Rosa als Lieblingsfarbe nennen.
[1 Punkt]
Aufgabe 4192
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil b
Die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person Orange als Lieblingsfarbe nennt, beträgt 7 %. Unter n befragten Personen soll mit einer Wahrscheinlichkeit von mindestens 90 % mindestens 1 Person sein, die Orange als Lieblingsfarbe nennt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Anzahl n derjenigen Personen, die dafür mindestens befragt werden müssen.
[1 Punkt]
Aufgabe 4193
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil c
Die binomialverteilte Zufallsvariable X beschreibt die Anzahl derjenigen Personen unter 10 Befragten, die Lila als Lieblingsfarbe nennen. Die Wahrscheinlichkeitsfunktion dieser Zufallsvariablen ist in der nachstehenden Abbildung dargestellt.
Die Wahrscheinlichkeit, dass unter 10 Befragten maximal 3 Befragte Lila als Lieblingsfarbe nennen, betragt 96 %.
1. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie die Wahrscheinlichkeit für die in der obigen Abbildung fehlende Säule für P(X = 2) an.
[1 Punkt]
Aufgabe 4194
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lieblingsfarbe - Aufgabe A_082
Teil d
Die Schüler/innen einer Schule wurden nach ihren Lieblingsfarben gefragt. In der nachstehenden Abbildung ist dargestellt, wie viel Prozent der Befragten die jeweilige Farbe als Lieblingsfarbe genannt haben.
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie, woran man erkennen kann, dass man auch mehr als eine Lieblingsfarbe nennen durfte.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4195
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil a
Um die Gehzeit für eine Wanderung zu ermitteln, kann die folgende Faustregel angewendet werden: „Die Höhendifferenz in Metern dividiert man durch 400, die Horizontalentfernung in Kilometern dividiert man durch 4. Addiert man diese beiden Ergebnisse, so erhält man die Gehzeit in Stunden.“
1. Teilaufgabe - Bearbeitungszeit 5:40
Übertragen Sie diese Faustregel in eine Formel für die Gehzeit t.
[1 Punkt]
Verwenden Sie dabei die folgenden Bezeichnungen:
- h ... Höhendifferenz in m
- x ... Horizontalentfernung in km
- t ... Gehzeit in h
- t = gesucht
Jemand legt bei einer Wanderung eine Horizontalentfernung von 6,7 km zurück und benötigt dafür eine Gehzeit von 3 h 15 min.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die dabei überwundene Höhendifferenz mithilfe der angegebenen Faustregel.
[1 Punkt]
Aufgabe 4196
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil b
In der nachstehenden Abbildung ist der Höhenverlauf während einer 3-stündigen Wanderung dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die mittlere Änderungsrate der Seehöhe in Abhängigkeit von der Zeit für die gesamte Wanderung. Geben Sie das Ergebnis mit der zugehörigen Einheit an.
[1 Punkt]
Jemand behauptet: „Nach etwa 1,5 Stunden wurde eine Pause eingelegt. Das erkennt man daran, dass der Graph während der Pause waagrecht verlauft.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie, dass diese Behauptung nicht zwingend richtig sein muss.
[1 Punkt]
Aufgabe 4197
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil c
Bei der Besteigung eines bestimmten Berges ist die Gesamtgehzeit indirekt proportional zu dem durchschnittlichen überwundenen Höhenunterschied in Metern pro Stunde (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung ab, welcher Höhenunterschied bei dieser Besteigung insgesamt überwunden werden muss.
[1 Punkt]