Quadratischen Gleichung mit einer Variablen
In dieser Mikro-Lerneinheit lernst du mehrere Methoden, wie man eine quadratische Gleichung lösen kann. Wir werden die allgemeine quadratische Gleichung mittels der abc-Formel und die normierte quadratische Gleichung mittels der pq-Formel lösen. Mit Hilfe der Diskriminante erkennst du, wie viele Lösungen eine quadratische Gleichung hat und welcher Zahlenmenge die Lösungen angehören.
Gleichung 2. Grades
Eine allgemeine quadratische Gleichung in einer Variablen besteht aus einem quadratischen, einem linearen und einem konstanten Glied
\(a \cdot {x^2} + b \cdot x + c = 0\)
Damit es sich auch wirklich um eine quadratische Gleichung handelt muss a≠0 und es darf auch kein Term höherer als 2. Potenz vorkommen. Eventuell muss man die Null auf der rechten Seite vom Gleichheitszeichen durch Äquivalenzumformungen herbei führen.
- Parameter a: mit zunehmenden a wird der Graph der Parabel immer steiler
- Parameter b: mit zunehmenden b verschiebt sich der Scheitelpunkt der Parabel entlang einer Geraden mit 45° Steigung vom Ursprung weg
- Parameter c: verschiebt den Graph der Parabel in Richtung der y-Achse
Lösung einer allgemeinen quadratischen Gleichung mittels abc-Formel
Die Lösung einer allgemeinen quadratischen Formel erfolgt mittels der abc Formel. Die abc Formel wird auch gerne "„Mitternachtsformel“ genannt
\(\eqalign{ & a{x^2} + bx + c = 0 \cr & {x_{1,2}} = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \cr & D = {b^2} - 4ac \cr}\)
Man erhält 2 Lösungen, die Lösung für x1 ergibt sich wenn man vor der Wurzel das "+" rechnet, die Lösung für x2 ergibt sich, wenn man vor der Wurzel das "-" rechnet.
Quadratische Gleichung in Normalform
Bei einer quadratischen Gleichung in Normalform ist der Koeffizient vor dem quadratischen Glied eine "1". Darüber hinaus gibt es noch ein lineares und ein konstantes Glied
\({x^2} + px + q = 0\)
Normierte quadratische Gleichung
Man kann die allgemeine quadratische Gleichung in eine quadratische Gleichung in Normalform durch Division der Gleichung durch a, also dem Koeffizienten im quadratischen Glied, wie folgt umrechnen bzw. normieren
\(\eqalign{ & a \cdot {x^2} + b \cdot x + c = 0\,\,\,\,\,\left| {:a} \right. \cr & {x^2} + \frac{b}{a} \cdot x + \frac{c}{a} = 0 \cr & {x^2} + p \cdot x + q = 0 \cr & {\text{mit}} \cr & {\text{p = }}\dfrac{b}{a};\,\,\,\,\,q = \dfrac{c}{a} \cr} \)
Lösung einer quadratischen Gleichung in Normalform mittels pq-Formel
Die Lösung einer quadratischen Gleichung in Normalform erfolgt mittels der pq Formel
\(\eqalign{ & {x^2} + px + q = 0\, \cr & {x_{1,2}} = - \dfrac{p}{2} \pm \sqrt {{{\left( {\dfrac{p}{2}} \right)}^2} - q\,\,\,\,} \cr & D = {\left( {\dfrac{p}{2}} \right)^2} - q \cr}\)
Der Satz von Vieta bietet eine Möglichkeit einer Probe, denn es muss gelten:
\(\eqalign{ & {x_1} + {x_2} = - p = - \dfrac{b}{a} \cr & {x_1} \cdot {x_2} = q = \dfrac{c}{a} \cr} \)
Anmerkung: Man kann jede quadratische Gleichung mit der abc Formel lösen. Ob es eine Vereinfachung bringt eine allgemeine quadratische Gleichung mittels Division durch a auf die Normalform zuzurechnen, um dann die etwas einfachere pq-Formel nützen zu können muss man individuell entscheiden. Im Zeitalter vom Taschenrechner, wird es sich wohl nicht auszahlen.
Rein quadratische Gleichung
Bei einer rein quadratischen Gleichung gibt es nur ein quadratisches und ein konstantes, aber kein lineares Glied.
\(a \cdot {x^2} + c = 0\)
Lösung einer rein quadratischen Gleichung mittels Äquivalenzumformung
Die Lösung einer rein quadratischen Gleichung erfolgt durch Äquivalenzumformung
\(\eqalign{ & a \cdot {x^2} + c = 0 \cr & {x_{1,2}} = \pm \sqrt { - \dfrac{c}{a}} \cr & D = - \dfrac{c}{a} \cr} \)
Diskriminante
In allen drei Lösungen ist ein Wurzelausdruck enthalten. Den Wert unter dem Wurzelzeichen nennt man Diskriminante. Mit Hilfe der Diskriminanten erkennst du, wie viele Lösungen eine quadratische Gleichung hat und welcher Zahlenmenge die Lösungen angehören.
Quadratische Gleichungen haben, abhängig von der Diskriminante "D" drei mögliche Lösungsfälle.
1. Fall: D > 0 à 2 Lösungen in R, die zugrunde liegende Funktion hat 2 Nullstellen. Dh der Graph der Funktion schneidet 2-Mal die x-Achse
2. Fall: D = 0 à 1 (eigentlich 2 gleiche) Lösung in R, die zugrunde liegende Funktion hat 1 doppelte Nullstelle. Dh der Graph der Funktion berührt die x-Achse.
3. Fall: D < 0 à keine Lösung in R, aber 2 konjugiert komplexe Lösungen in C. Der Graph der zugrunde liegenden Funktion berührt oder schneidet die x-Achse nicht.
Illustration vom Zusammenhang zwischen Diskriminante und Anzahl der reellen Nullstellen
Quadratische Gleichung mit komplexer Lösung
Im Bereich der komplexen Zahlen lassen sich nun auch jene quadratischen Gleichungen lösen, deren Diskriminante kleiner Null ist - d.h. deren Wert unter der Wurzel negativ ist. In diesem Fall gibt es 2 zu einander konjugiert komplexe Lösungen.
\(D < 0: \pm \sqrt { - D} = \pm \sqrt { - 1 \cdot D} = \pm \sqrt { - 1} \cdot \sqrt D = \pm i \cdot \sqrt D \)
→ Wir gehen im Kapitel über komplexe Zahlen auf das Thema näher ein.