Gebrochenrationale Funktionen (Hyperbel)
Hier findest du folgende Inhalte
Formeln
Gebrochenrationale Funktion
Gebrochenrationale Funktionen haben sowohl im Zähler als auch im Nenner ein Polynom.
\(f\left( x \right) = \dfrac{{p\left( x \right)}}{{q\left( x \right)}}\)
- Echt gebrochenrationale Funktion: Der Grad vom Zählerpolynom ist kleiner als der Grad vom Nennerpolynom. Ein Beispiel hierfür sind die Hyperbeln.
- Unecht gebrochenrationale Funktion: Der Grad vom Zählerpolynom ist größer oder gleich als der Grad vom Nennerpolynom.
Hyperbel n-ten Grades
Bei Hyperbeln n-ten Grades sind die Funktionswerte f(x) zu den Potenzen der Argumente x indirekt proportional. Der Graph der Funktion ist eine Hyperbel. Man bezeichnet die Funktion auch als Reziprokfunktion. Achtung: unter "hyperbolischen" Funktionen versteht man spezielle Exponentialfunktionen.
\(\eqalign{ & f\left( x \right) = \dfrac{c}{{{x^n}}} = c \cdot {x^{ - n}} \cr & n \in {{\Bbb N}_g} \cr}\)
Hyperbeln vom Grad n, wenn n gerade ist
Graph liegt symmetrisch zur y-Achse
Hyperbeln vom Grad n, wenn n ungerade ist
Graph liegt symmetrisch zur x-Achse
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.