Quadratische Funktion
Hier findest du folgende Inhalte
Formeln
Darstellung von Funktionen
Unter einer Funktion versteht man die eindeutige Zuordnung von jedem Element x der Definitionsmenge zu genau einem Element y der Wertemenge. Unter einer reellen Funktion versteht man die Abbildung von reellen Zahlen der Definitionsmenge auf reelle Zahlen der Wertemenge.
\(f:{D_f} \to {W_f}\,\,\,{\text{mit}}\,\,\,x \in {D_f}\,\,\,{\text{und}}\,\,\,y \in {W_f}\)
Es gibt mehrere gängige Schreibweisen für Funktionsgleichungen
\(f:x \to 2{x^3}\)
\(f\left( x \right) = 2{x^3}\)
\(y = 2{x^3}\)
Funktionsgleichung
Unter einer Funktionsgleichung versteht man eine mathematische Vorschrift, die angibt, wie man aus einem gegebenen x-Wert den zugehörigen y-Wert errechnet. Dabei ist y abhängig davon, welchen Wert x man in die Funktionsgleichung einsetzt. Die Funktionsgleichung stellt die Abbildung der Werte aus der Definitionsmenge Df auf die Wertemenge Wf in Form einer Gleichung dar.
\(f:{\Bbb R} \to {\Bbb R};\,\,\,y = f\left( x \right)\)
Daher nennt man
- y die abhängige Variable bzw. den Funktionswert
- x die unabhängige Variable bzw. das Funktionsargument
Typen wichtiger Funktionsgleichungen
Konstante Funktion | \(f\left( x \right) = c\) |
Direkt proportionale Funktion sie sind für d=0 eine Untermenge der linearen Funktionen |
\(f\left( x \right) = k \cdot x\) |
Lineare Funktion | \(f\left( x \right) = k \cdot x + d\) |
Quadratische Funktion (Parabel) | \(f\left( x \right) = a \cdot {x^2} + b \cdot x + c\) |
Indirekt proportionale Funktion (Hyperbel) sie sind für negative n eine Untermenge der Potenzfunktionen |
\(f\left( x \right) = \dfrac{c}{{{x^n}}} = c \cdot {x^{ - n}}\) |
Potenzfunktion | \(f\left( x \right) = c \cdot {x^n}\) |
Wurzelfunktion | \(f\left( x \right) = \root n \of x = {x^{\dfrac{1}{n}}}\) |
Exponentialfunktion | \(\begin{array}{l} f\left( x \right) = c \cdot {a^x}\\ f\left( x \right) = c \cdot {e^x} \end{array}\) |
Logarithmusfunktion | \(f\left( x \right) = {}^a\log x\) |
Periodische Funktion | \(f\left( {x + T} \right) = f\left( x \right)\) |
Polynomfunktion | \(f\left( x \right) = {a_n} \cdot {x^n} + {a_{n - 1}} \cdot {x^{n - 1}} + ... + {a_1} \cdot x + {a_0}\) |
uvm. |
Graph einer Funktion
Jedem Wert auf der x-Achse wird über die Funktion ein Punkt auf der y-Achse zugeordnet. Die Menge aller Punkte einer Funktion f(x) mit den Koordinaten (x|y=f(x)) bilden eine Kurve in der Gaus`schen Ebene, den sogenannten Graphen der Funktion.
\(y = f\left( x \right)\)
Geometrische Darstellung: Trägt man die unabhängige Variable x auf der x-Achse und die abhängige Variable y=f(x) auf der y-Achse auf, erhält man den Graph als eine grafische Darstellung der Funktion in Form einer Kurve.
Wertetabelle einer Funktion
Trägt man in einer 2-spaltigen Tabelle in der 1. Spalte die x-Werte gemäß der Definitionsmenge Df ein und in der 2. Spalte die y=f(x) Werte gemäß der Wertemenge Wf, so erhält man Zahlenpaare, die die Zeilen der Wertetabelle bilden.
x | y=f(x) |
x1 | f(x1) |
x2 | f(x2) |
... | ... |
xi | f(xi) |
Mengendiagramm einer Funktion
Grafische Gegenüberstellung von Definitionsmenge und Wertemenge einer Funktion, wobei die Wertepaare durch Pfeile mit einander verbunden werden
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Polynomfunktionen n-ten Grades
Ein Polynom ist die Summe von mehreren Potenzfunktionen. Der Grad der Polynomfunktion „n“ entspricht der höchsten vorkommenden Potenz von der Variablen x. Alle Polynomfunktionen verlaufen durch den Punkt \(P\left( {0\left| {{a_0}} \right.} \right)\). Der Definitionsbereich von Polynomfunktionen ist nicht eingeschränkt, daher gilt: \(D = {\Bbb R}\). Polynomfunktionen werden auch ganzrationale Funktionen genannt.
\(f\left( x \right) = {a_n} \cdot {x^n} + {a_{n - 1}} \cdot {x^{n - 1}} + ... + {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0}\)
\(f\left( x \right) = \sum\limits_{i = 0}^n {{a_i} \cdot {x^i}} \)
\(f\left( x \right) = c \cdot \left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \cdot ... \cdot \left( {x - {x_n}} \right){\text{ wobei }}{{\text{x}}_n}{\text{ die n Nullstellen sind}}\)
wobei:
\(\eqalign{ & {a_n},{a_{n - 1}},...,{a_1},{a_0} \cr & n \in N;\,\,\,\,\,{a_i} \in {\Bbb R};\,\,\,\,\,{a_n} \ne 0 \cr} \) | Koeffizienten |
ai | i-ter Koeffizient |
n | höchste Potenz |
\({a_2} \cdot {x^2}\) | quadratisches Glied |
\({a_1} \cdot x\) | lineares Glied |
\({a_0}\) | konstantes Glied |
Die wichtigsten Polynomfunktionen:
n=0:
konstante Funktion
\(f\left( x \right) = {a_0}\)
- 0 oder bei f(x)== unendlich viele Nullstellen
- 0 Extremstellen
- 0 Wendestellen
- Typischer Graph verläuft parallel zur x-Achse
n=1:
lineare Funktion
\(f\left( x \right) = {a_1} \cdot x + {a_0} = k \cdot x + d\)
- 1 Nullstelle
- 0 Extremstellen
- 0 Wendestellen
- Typischer Graph ist eine Gerade, welche die x und die y-Achse schneidet
n=2:
quadratische Funktion bzw. Parabel
\(f\left( x \right) = {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0} = a \cdot {x^2} + b \cdot x + c\)
- 0, 1 oder 2 Nullstellen
- 1 Extremstelle, bei: \(x = - \dfrac{{{a_1}}}{{2{a_2}}}{\text{ für }}{{\text{a}}_2} \ne 0\)
- 0 Wendestelle
- Typischer Graph ist eine Parabel
Die quadratische Funktion setzt sich aus einem quadratischen, einem linearen und einem konstanten Glied zusammen.
- a > 0 → Graph noch oben offen (U-förmig), d.h. der Scheitelpunkt der Parabel ist ein Tiefpunkt
- a < 0 → Graph nach unten offen, d.h. der Scheitelpunkt der Parabel ist ein Hochpunkt
- Der Faktor b bewirkt eine Schiebung in x und y-Richtung.
- b = 0 → Der Scheitelpunkt der Parabel liegt auf der y-Achse. Wo auf der y-Achse der Scheitelpunkt liegt, hängt dann nur von c ab
- b = 0 und c = 0 → Scheitelpunkt der Parabel liegt im Ursprung vom Koordinatensystem
- Der Faktor c bewirkt ausschließlich eine Verschiebung noch oben (c>0) oder nach unten (c<0)
n=3:
kubische Funktion
\(f(x) = {a_3} \cdot {x^3} + {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0}\)
- 1, 2 oder 3 Nullstellen
- 0 oder 2 Extremstellen
- 1 Wendestelle
- Typischer Graph verläuft s-förmig
n=4:
\(f(x) = {a_4} \cdot {x^4} + {a_3} \cdot {x^3} + {a_2} \cdot {x^2} + {a_1} \cdot x + {a_0}\)
- 0 .. 4 Nullstellen
- 1 oder 3 Extremstellen
- 0 oder 2 Wendestellen
- Typischer Graph verläuft w-förmig
Nullstellen: Maximale Anzahl der Nullstellen = Grad der Funktion.
- Wenn „n“ ungerade ist, dann haben sie mindestens eine Lösung in \({\Bbb R}\)
Extremstellen: Maximale Anzahl der Extremstellen = Grad der Funktion n minus 1
Wendepunkte: Maximale Anzahl der Wendepunkte = Grad der Funktion n minus 2
- \(n \geqslant 3\) und n gerade: 0, 2, 4,.. Wendestellen
- \(n \geqslant 3\) und n ungerade: mindestens 1 Wendestelle
konstantes Glied: Das konstante Glied erhält man immer an der Stelle x=0. Daher kann man es aus einem Graph auf der y-Achse (\(P\left( {0\left| {{a_n}} \right.} \right)\)) direkt ablesen.
Quadratische Funktionen (Parabeln)
Der Graph einer quadratischen Funktion ist eine Parabel. Die Parabel ist nach oben oder nach unten offen und nach links und rechts unbegrenzt. Der Punkt an dem die Parabel ihr Minimum annimmt heißt Scheitelpunkt. Die y-Achse ist die Symmetrieachse der Parabel. Es handelt sich um eine gerade Funktion, da f(x)=f(-x).
\(f\left( x \right) = a \cdot {x^2}\)
Allgemeine Form der quadratischen Funktion
Die quadratische Funktion setzt sich aus einem quadratischen, einem linearen und einem konstanten Glied zusammen.
- quadratisches Glied: Ist a positiv, so ist die Parabel noch oben offen, ist a negativ, so ist die Parabel nach unten offen. Die rein quadratische Parabel hat ihren Scheitel im Ursprung.
- lineares Glied: Verschiebt den Scheitel der Parabel in Richtung der x- und y-Achse. Die Parabel verläuft aber weiterhin durch den Ursprung
- konstantes Glied: Verschiebt die Parabel in Richtung der y-Achse. Der Parameter c heißt y-Achsenabschnitt der Parabel. Es ist dies der Schnittpunkt der Parabel mit der y-Achse, somit der Punkt \(S\left( {0\left| {{S_y}} \right.} \right)\)
\(f(x) = a \cdot {x^2} + b \cdot x + c\)
Normalform der quadratischen Funktion
Man kann durch Division durch a erzwingen, dass der Parameter a=1 wird. Dann spricht man von der Normalform der quadratischen Funktion.
\(f(x) = {x^2} + p \cdot x + q\)
Nullstellenform der quadratischen Funktion
Die Nullstellenform, auch die faktorisierte Form der quadratischen Funktion genannt, gibt es nur dann wenn die Parabel , also der Graph der quadratischen Funktion, überhaupt die x-Achse schneidet. Die quadratische Funktion in faktorisierter Form weist direkt die Nullstellen x1 bzw. x2 aus. Die Nullstellen der quadratischen Funktion findet man mit der abc Formel, die auch Mitternachtsformel genannt wird (siehe dort).
\(\eqalign{ & f\left( x \right) = a\left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \cr & {x_{1,2}} = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \cr}\)
Beispiel:
Reinquadratische Funktion in der allgemeinen Form mit a=1 b=0 c=0
Beispiel:
Quadratischen Funktion mit a=1, b=1 und c=0; Durch das lineare Glied, welches einer Geraden durch den Ursprung mit einer Steigung von 45° entspricht, erhalten wir eine nach links und nach unten verschobene Gerade.
Beispiel:
Quadratischen Funktion mit a=1, b=0 und c=1; Durch das konstante Glied c=1 wird der Graph der Funktion um c nach oben verschoben.
Beispiel:
Reinquadratischen Funktion mit a=-1, b=0 und c=0; Wir erhalten eine nach unten offene Normalparabel, was einer Spiegelung um die x-Achse entspricht.
Aufgaben
Aufgabe 1301
AHS - 1_301 & Lehrstoff: FA 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratisches Prisma
Das Volumen V eines geraden quadratischen Prismas hängt von der Seitenlänge a der quadratischen Grundfläche und von der Höhe h ab. Es wird durch die Formel \(V = {a^2} \cdot h\) beschrieben.
Aufgabenstellung:
Stellen Sie die Abhängigkeit des Volumens V(a) in cm³ eines geraden quadratischen Prismas von der Seitenlänge a in cm bei konstanter Höhe h = 5 cm durch einen entsprechenden Funktionsgraphen im Intervall [0; 4] dar!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1004
AHS - 1_004 & Lehrstoff: AN 1.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Änderungsmaße
Die nachstehende Abbildung zeigt den Graphen der Funktion f mit der Gleichung \(f\left( x \right) = 0,1 \cdot {x^2}\)
- Aussage 1: Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß.
- Aussage 2: Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich.\(\Delta y = {y_{n + 1}} - {y_n}\)
- Aussage 3: Die momentane Änderungsrate an der Stelle x = 5 hat den Wert 2,5.
- Aussage 4: Die momentane Änderungsrate an der Stelle x = 2 ist größer als die momentane Änderungsrate an der Stelle x = 6.
- Aussage 5: Die Steigung der Sekante durch die Punkte A = (3|f(3)) und B = (6|f(6)) ist größer als die momentane Änderungsrate an der Stelle x = 3.
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die für die gegebene Funktion f zutreffend sind!
Aufgabe 4181
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pelletsheizung - Aufgabe A_068
Teil c
Bei einer Lieferung werden die Pellets in einer Höhe von 2 m durch einen Einblasstutzen in einen Lagerraum waagrecht eingeblasen. Eine aufgehängte Schutzmatte soll dabei verhindern, dass die Pellets brechen, wenn die Einblasgeschwindigkeit zu groß ist. Die Flugbahn eines Pellets kann modellhaft durch den Graphen der folgenden quadratischen Funktion beschrieben werden:
\(h\left( x \right) = - \dfrac{{5 \cdot {x^2}}}{{{v_0}^2}} + 2\)
mit
x ... waagrechte Entfernung vom Einblasstutzen in m
h(x) ... Flughöhe eines Pellets über dem Boden bei der Entfernung x in m
v0 ... Einblasgeschwindigkeit in m/s
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen der Funktion h für eine Einblasgeschwindigkeit von v0 = 4 m/s ein.
[1 Punkt]
Bei einer anderen Einblasgeschwindigkeit trifft das Pellet gerade noch das untere Ende der 1 m langen Schutzmatte.
2. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie diese Einblasgeschwindigkeit.
[1 Punkt]
Aufgabe 1122
AHS - 1_122 & Lehrstoff: FA 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Potenzfunktion
Von einer Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^2} + b\) ist der Graph gegeben:
Aufgabenstellung:
Ermitteln Sie die Werte der Parameter a und b!
Aufgabe 4082
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flussläufe und Pegelstände -Aufgabe A_266
Teil b
Auf einem annähernd geradlinig verlaufenden Abschnitt eines Flusses soll das Flussbett verbreitert und vertieft werden. In der nachstehenden Abbildung ist das Flussbett im Querschnitt dargestellt.
mit
f | Profillinie des ursprünglichen Flussbetts |
h | Profillinie des neuen Flussbetts |
f und h sind Polynomfunktionen 2. Grades mit zur y-Achse symmetrischen Graphen.
Ein Teilstuck des Flussbetts mit der Lange L (in m) wird ausgebaggert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie unter Angabe der entsprechenden Einheit, was mit dem folgenden Ausdruck im gegebenen Sachzusammenhang berechnet wird:
\(2 \cdot \left| {\int\limits_0^{17,5} {h\left( x \right)\,\,dx - \int\limits_0^{15} {f\left( x \right)\,\,dx} } } \right| \cdot L\)
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe der obigen Abbildung eine Gleichung der Funktion h.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4212
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kochzeit von Eiern - Aufgabe A_289
Teil a
Der Physiker Werner Gruber hat mit Hühnereiern experimentiert. Er hat festgestellt, dass die Kochzeit von Eiern unter anderem abhängt von:
- dem Durchmesser d des Eies (siehe nebenstehende Abbildung)
- der Lagertemperatur x vor dem Kochen
Datenquelle: Gruber, Werner: Die Genussformel. Kulinarische Physik. Salzburg: Ecowin 2008, S. 79 – 84.
Ein Ei soll weich gekocht werden. Die Kochzeit kann in Abhängigkeit vom Durchmesser d unter bestimmten Bedingungen näherungsweise durch die quadratische Funktion W beschrieben werden:
\(W\left( d \right) = a \cdot {d^2}\)
d | Durchmesser des Eies in mm |
W(d) | Kochzeit bei einem Durchmesser d in min |
a | positiver Parameter |
Bei einem Durchmesser von 45 mm ergibt sich eine Kochzeit von 5 min.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Parameter a.
[1 Punkt]
Zwei Eier mit unterschiedlichen Durchmessern werden weich gekocht. Der Durchmesser von Ei B ist um 10 % größer als der Durchmesser von Ei A.
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass die Kochzeit von Ei B um mehr als 10 % länger ist als die Kochzeit von Ei A.
[1 Punkt]
Aufgabe 4213
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kochzeit von Eiern - Aufgabe A_289
Teil b
Die quadratische Funktion Z beschreibt näherungsweise die Kochzeit für ein weich gekochtes Ei in Abhängigkeit von der Lagertemperatur:
\(Z\left( x \right) = - 0,024 \cdot {x^2} - 2,16 \cdot x + 252\)
x | Lagertemperatur in °C |
Z(x) | Kochzeit bei der Lagertemperatur x in s |
Ein Ei wird anstatt bei einer Temperatur von 4 °C (Kühlschranktemperatur) bei einer Temperatur von 20 °C (Raumtemperatur) gelagert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, um wie viele Sekunden die Kochzeit dadurch kürzer ist.
[1 Punkt]
Aufgabe 1341
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer quadratischen Funktion
Im nachfolgenden Koordinatensystem ist der Graph einer quadratischen Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb R}\) dargestellt.
Aufgabenstellung:
Ermitteln Sie die Werte der Parameter a und b! Die für die Berechnung relevanten Punkte mit ganzzahligen Koordinaten können dem Diagramm entnommen werden.
a =
b =
Aufgabe 1027
AHS - 1_027 & Lehrstoff: AN 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ermittlung einer Funktionsgleichung
Gegeben ist die Funktion f mit der Gleichung \(f\left( x \right) = {x^2} + bx + c{\text{ mit }}b,\,\,c \in \mathbb{R}\). Der Graph der Funktion f verläuft durch den Ursprung. Die Steigung der Funktion im Ursprung hat den Wert null.
Aufgabenstellung:
Ermitteln Sie die Werte der Parameter b und c und geben Sie die Gleichung der Funktion f an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1322
AHS - 1_322 & Lehrstoff: FA 1.8
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Drehkegel
Das Volumen eines Drehkegels kann durch eine Funktion V in Abhängigkeit vom Radius r und von der Hohe h folgendermaßen angegeben werden: \(V\left( {r,h} \right) = \dfrac{1}{3} \cdot {r^2} \cdot \pi \cdot h\)
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Das Volumen V(r, h) bleibt unverändert, wenn der Radius r _____1_____ wird und die Hohe h _____2_____ wird.
1 | |
verdoppelt | A |
halbiert | B |
vervierfacht | C |
2 | |
verdoppelt | I |
halbiert | II |
vervierfacht | III |
Aufgabe 1267
AHS - 1_267 & Lehrstoff: FA 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wirkung der Parameter
Gegeben ist eine Potenzfunktion g mit der Gleichung \(g\left( x \right) = c \cdot {x^2} + d\) mit c < 0 und d > 0
- Aussage 1: g schneidet die y-Achse im Punkt P = (d | 0).
- Aussage 2: g besitzt zwei Nullstellen.
- Aussage 3: Je größer d ist, umso steiler verläuft der Graph von g.
- Aussage 4: Je kleiner c ist, umso flacher verläuft der Graph von g.
- Aussage 5: g besitzt einen Hochpunkt.
Aufgabenstellung
Kreuzen Sie die beiden für g zutreffenden Aussagen an!
Aufgabe 242
Parameter einer quadratischen Funktion
In einem Koordinatensystem ist der Graph einer quadratischen Funktion dargestellt.
Es gilt: \(f\left( x \right) = a{x^2} + bx + c\) mit b=0 und \({\text{a}}{\text{, b}}{\text{, c }} \in {\Bbb R}\)
Aufgabenstellung:
Ermittle die Werte der Parameter a und c. Die dafür erforderlichen Punkte - wähle solche mit ganzzahligen Koordinaten - sind im Koordinatensystem abzulesen.