Mittlere Änderungsrate
Der Differenzenquotient gibt die mittlere Änderungsrate in einem Intervall an und entspricht der Steigung einer Sekante durch zwei Punkte am Graph der Funktion
Hier findest du folgende Inhalte
Formeln
Änderungsmaße
Um die Änderung von einem Wert in Bezug auf einen anderen Wert quantifizieren zu können, bedient man sich verschiedener Änderungsmaße. Man unterscheidet dabei zwischen Änderung und Änderungsrate
- Änderung: Beschreibt die Veränderung zwischen dem "vorher" und dem "nachher" Wert einer Größe
- Absolute Änderung
- Relative Änderung
- Prozentuelle Änderung
- Änderungsrate: Beschreibt das Verhältnis der Veränderung einer abhängigen Größe \(\Delta y\) zur Veränderung einer unabhängigen Größe \(\Delta x\)
- Mittlere Änderungsrate
- Momentane Änderungsrate
Absolute Änderung
Die absolute Änderung entspricht der Differenz aus "oberem Wert" minus "unterem Wert" vom betrachteten Intervall. Sie hat - im Unterschied zur relativen bzw. prozentuellen Änderung - eine physikalische Einheit.
\(\begin{array}{l} \Delta y = {y_2} - {y_1}\\ \Delta {y_n} = {y_{n + 1}} - {y_n}\\ \Delta f = f\left( b \right) - f\left( a \right) \end{array}\)
Relative Änderung
Die relative Änderung entspricht der absoluten Änderung „bezogen auf den“ oder „relativ zum“ Grundwert. Sie errechnet sich als der Quotient aus der absoluten Änderung und dem Grundwert. Die relative Änderung ist eine Dezimalzahl, die keine physikalische Einheit hat.
\(\begin{array}{l} \dfrac{{\Delta y}}{{{y_1}}} = \dfrac{{{y_2} - {y_1}}}{{y1}}\\ \dfrac{{\Delta {y_n}}}{{{y_n}}} = \dfrac{{{y_{n + 1}} - {y_n}}}{{{y_n}}}\\ \dfrac{{\Delta f}}{{{f_a}}} = \dfrac{{f\left( b \right) - f\left( a \right)}}{{f\left( a \right)}} \end{array}\)
Prozentuelle Änderung
Die prozentuale Änderung entspricht dem Quotienten aus der absoluten Änderung und dem Grundwert, multipliziert mit 100%. Die prozentuale Änderung ist daher eine relative Änderung in Prozentschreibweise ohne physikalische Einheit. Der Grundwert y1 ist zugleich der 100% Wert. Die prozentuale Änderung beschreibt in Prozent, um wie viel sich ein gegebener Grundwert verändert, also erhöht oder verringert, hat.
\(p = \dfrac{{{y_2} - {y_1}}}{{{y_1}}} \cdot 100\% \)
Beispiel:
Datenquelle:
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/b…
- durchschnittliche Bevölkerung Österreichs im Jahr 2000: 8.011.566 EW
- durchschnittliche Bevölkerung Österreichs im Jahr 2019: 8.877.637 EW
absolute Änderung der Bevölkerung im Betrachtungszeitraum:
\(E{W_{2019}} - E{W_{2000}} = 8.877.637{\text{ EW}} - 8.011.566{\text{ EW}} = 866.071{\text{ EW}}\)
→ Die Bevölkerung ist im Betrachtungszeitraum um 866.071 Einwohner gestiegen
relative Änderung der Bevölkerung im Betrachtungszeitraum:
\(\dfrac{{E{W_{2019}} - E{W_{2000}}}}{{E{W_{2000}}}} = \dfrac{{8.877.637 - 8.011.566}}{{8.011.566}} = \dfrac{{866.071}}{{8.011.566}} = 0,1081\)
→ Die Bevölkerung ist im Betrachtungszeitraum auf das 1,1081 fache gestiegen
prozentuale Änderung der Bevölkerung im Betrachtungszeitraum:
\(\dfrac{{E{W_{2019}} - E{W_{2000}}}}{{E{W_{2000}}}} \cdot 100\% = \dfrac{{866.071}}{{8.011.566}} \cdot 100\% = 10,81\% \)
→ Die Bevölkerung ist im Betrachtungszeitraum um 10,81 % gestiegen
Differenzengleichungen
Eine Differenzengleichung ist eine rekursive Bildungsvorschrift für eine Zahlenfolge. Mit Hilfe der Differenzengleichung kann man aus der n-ten Zahl xn der Folge die darauf folgende n+1 Zahl xn+1 der Folge ermitteln. x0 ist der Startwert der Folge. n muss eine natürliche Zahl (1,2,3…) sein
Die lineare Differenzengleichung entspricht einer arithmetischen Folge. Dabei liegt zwischen dem n-ten und den n+1-ten Glied ein fester Betrag k.
\(\eqalign{ & {a_{n + 1}} = {a_n} \pm k........{\text{rekursive Darstellung}} \cr & {a_{n + 1}} - {a_n} = \pm k......{\text{Differenzendarstellung}} \cr} \)
Beispiel Startwert 100, je Zeitintervall kommen 5 Einheiten dazu
\(\eqalign{ & {a_0} = 100 \cr & {a_1} = {a_0} + k = 100 + 5 = 105 \cr & {a_2} = {a_1} + k = 105 + 5 = 110 \cr} \)
Die exponentielle Differenzengleichung entspricht einer geometrischen Folge. Dabei liegt zwischen dem n-ten und den n+1-ten Glied ein fester Prozentsatz bzw. ein gleicher relativer Anteil.
\(\eqalign{ & {a_{n + 1}} = {a_n} \cdot q{\text{ mit q}} = \dfrac{{{a_{n + 1}}}}{{{a_n}}}{\text{ = 1}} \pm \dfrac{p}{{100}}.....{\text{rekursive Darstellung}} \cr & {a_{n + 1}} - {a_n} = {a_n} \cdot \left( {q - 1} \right)..........{\text{Differenzendarstellung}} \cr} \)
Beispiel: Startwert 100, sinkt je Zeitintervall um 5%
\(\eqalign{ & {a_0} = 100\,\,\,\,\,\,\,\,5\% \buildrel \wedge \over = 1 - \frac{5}{{100}} = 0,95 \cr & {a_1} = 100 \cdot 0,95 = 95 \cr & {a_2} = 95 \cdot 0,95 = 90,25 \cr} \)
Mittlere Änderungsrate bzw. Differenzenquotient
Der Differenzenquotient gibt die mittlere Änderungsrate in einem Intervall an und entspricht der Steigung einer Sekante durch zwei Punkte am Graph der Funktion \(f\). Die mittlere Änderungsrate errechnet sich aus dem Quotienten von der Differenz der Funktionswerte (f(b), f(a)) zur Differenz der Argumente (b, a).
\(\begin{array}{l} {k_{{\rm{Sekante}}}} = \dfrac{{\Delta y}}{{\Delta x}} = \dfrac{{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}}\\ {k_{{\rm{Sekante}}}} = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}} \end{array}\)
\(\dfrac{{\Delta y}}{{\Delta t}} = \dfrac{{y\left( {{t_2}} \right) - y\left( {{t_1}} \right)}}{{{t_2} - {t_1}}};\)
Während eine lineare Funktion (deren Graph eine Gerade ist) eine konstante Steigung k besitzt, hat eine Funktion höheren Grades (deren Graph eine "Kurve" ist) eine Steigung, die vom jeweiligen Punkt auf dem Graphen abhängt.
Der Differenzenquotient ermöglicht es, die Steigung einer nicht linearen Funktion für einen bestimmten Abschnitt, der durch 2 Punkte \({f\left( {{x_0}} \right)}\) und \({f\left( {{x_0} + \Delta x} \right)}\) auf dem Graphen definiert ist, zu berechnen. Dabei entspricht die jeweilige Steigung der Funktion der zugehörigen Steigung der Geraden (=Sekante) durch die beiden Punkte. Man spricht auch von der "mittleren Anstiegsrate"
Der Differenzenquotient ist leider nur eine Näherung für die Steigung der Funktion. Erst der Differentialquotient (als Grenzwert des Differenzenquotienten mit \(\vartriangle x \to 0\)) liefert dann eine exakte Berechnung, bei der die Sekante in eine Tangente übergeht, da der Abstand zwischen den beiden Punkten gegen Null geht.
Momentane Änderungsrate bzw. Differentialquotient
Der Differentialquotient gibt die momentane Änderungsrate im Punkt x0 an und entspricht der Steigung k der Tangente an die Funktion \(f\) . Er errechnet sich aus der 1. Ableitung \(f'\) der Funktion \(f\). Der Differentialquotient ist definiert als der Grenzwert (Limes) vom Differenzenquotient.
\(\eqalign{ & f'({x_0}) = {\left. {\dfrac{{df}}{{dx}}} \right|_{x = {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{f({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} = \dfrac{{dy}}{{dx}} \cr & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{{x_1} \to {x_0}} \dfrac{{f\left( {{x_1}} \right) - f\left( {{x_0}} \right)}}{{{x_1} - {x_0}}} \cr}\)
Grafisch lässt sich Differenzierbarkeit so deuten, dass an den Graphen der Funktion f(x) an jeder Stelle genau (!) eine Tangente existiert.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1004
AHS - 1_004 & Lehrstoff: AN 1.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Änderungsmaße
Die nachstehende Abbildung zeigt den Graphen der Funktion f mit der Gleichung \(f\left( x \right) = 0,1 \cdot {x^2}\)
- Aussage 1: Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß.
- Aussage 2: Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich.\(\Delta y = {y_{n + 1}} - {y_n}\)
- Aussage 3: Die momentane Änderungsrate an der Stelle x = 5 hat den Wert 2,5.
- Aussage 4: Die momentane Änderungsrate an der Stelle x = 2 ist größer als die momentane Änderungsrate an der Stelle x = 6.
- Aussage 5: Die Steigung der Sekante durch die Punkte A = (3|f(3)) und B = (6|f(6)) ist größer als die momentane Änderungsrate an der Stelle x = 3.
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die für die gegebene Funktion f zutreffend sind!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4196
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil b
In der nachstehenden Abbildung ist der Höhenverlauf während einer 3-stündigen Wanderung dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die mittlere Änderungsrate der Seehöhe in Abhängigkeit von der Zeit für die gesamte Wanderung. Geben Sie das Ergebnis mit der zugehörigen Einheit an.
[1 Punkt]
Jemand behauptet: „Nach etwa 1,5 Stunden wurde eine Pause eingelegt. Das erkennt man daran, dass der Graph während der Pause waagrecht verlauft.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie, dass diese Behauptung nicht zwingend richtig sein muss.
[1 Punkt]
Aufgabe 1481
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 13. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Mittlere Änderungsrate interpretieren
Gegeben ist eine Polynomfunktion f dritten Grades. Die mittlere Änderungsrate von f hat im Intervall \(\left[ {{x_1};{x_2}} \right]\) den Wert 5.
- Aussage 1: Im Intervall \(\left[ {{x_1};{x_2}} \right]\) gibt es mindestens eine Stelle x mit f(x) = 5.
- Aussage 2:\(f\left( {{x_2}} \right) > f\left( {{x_1}} \right)\)
- Aussage 3: Die Funktion f ist im Intervall \(\left[ {{x_1};{x_2}} \right]\) monoton steigend
- Aussage 4: \(f'\left( x \right) = 5\) für alle \(x \in \left[ {{x_1};{x_2}} \right]\)
- Aussage 5: \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = 5 \cdot \left( {{x_2} - {x_1}} \right)\)
Aufgabenstellung:
Welche der 5 Aussagen können über die Funktion f sicher getroffen werden? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1169
AHS - 1_169 & Lehrstoff: AN 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Mittlere Änderungsrate
Gegeben ist die Funktion f mit der Gleichung \(f\left( x \right) = {x^2} + 2\)
Aufgabenstellung:
Berechnen Sie die mittlere Änderungsrate von f im Intervall [1; 3]!
Aufgabe 1651
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 14. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Mittlere Änderungsrate
Von einer Funktion f ist die folgende Wertetabelle gegeben:
x | f(x) |
-3 | 42 |
-2 | 24 |
-1 | 10 |
0 | 0 |
1 | -6 |
2 | -8 |
3 | -6 |
4 | 0 |
5 | 10 |
6 | 24 |
Aufgabenstellung:
Die mittlere Änderungsrate der Funktion f ist im Intervall [–1; b] für genau ein \(b \in \left\{ {0;1;2;3;4;5;6} \right\}\) gleich null. Geben Sie b an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1771
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 14. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ölpreis
Die nachstehende Grafik zeigt die Preisentwicklung für Rohöl im Zeitraum vom 8.6.2012 bis 8.9.2012.
Datenquelle: http://www.heizoel24.at/charts/rohoel [14.12.2012] (adaptiert).
Aufgabenstellung:
Ermitteln Sie die mittlere Änderungsrate für den Preis pro Barrel Rohöl pro Monat im Zeitraum vom 1.7.2012 bis 1.9.2012.
mittlere Änderungsrate: ____ Euro pro Barrel Rohöl pro Monat
Aufgabe 1856
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körpergröße
Die Komponenten des Vektors K1 geben die Körpergrößen der Kinder einer bestimmten Schulklasse (in cm) zu Beginn eines Schuljahres an. Die Komponenten des Vektors K2 geben die Körpergröße dieser Kinder (in cm) n Monate später an (n ∈ ℕ\{0}). (Die Körpergrößen sind sowohl in K1 als auch in K2 in alphabetischer Reihenfolge der Namen der Kinder geordnet.)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Interpretieren Sie den Vektor \(\dfrac{1}{n} \cdot \left( {{K_2} - {K_1}} \right)\) im gegebenen Sachzusammenhang.
Aufgabe 1866
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 13. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abkühlung
Die differenzierbare Funktion T ordnet der Zeit t ≥ 0 die Temperatur T(t) eines Körpers zu (t in h, T(t) in °C). Die nachstehende Abbildung zeigt den Graphen dieser Funktion T.
Es gilt: T‘(1) = –15.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an.
[2 aus 5]
[0 / 1 P.]
- Aussage 1: Zum Zeitpunkt t = 2 ist die momentane Änderungsrate der Temperatur des Körpers kleiner als –15 °C/h.
- Aussage 2: Die Temperatur des Körpers ist eine Stunde nach Beginn des Abkühlungsprozesses um 15 °C niedriger als zum Zeitpunkt t = 0.
- Aussage 3: Zum Zeitpunkt t = 1 betragt die momentane Änderungsrate der Temperatur des Körpers –15 °C/h.
- Aussage 4: Es gilt: \(\dfrac{{T\left( 3 \right) - T\left( 1 \right)}}{2} > - 15\)
- Aussage 5: Im Verlauf der ersten Stunde betragt die durchschnittliche Abkühlungsgeschwindigkeit des Körpers 15 °C/h.
Aufgabe 4245
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pflanzenwachstum - Aufgabe A_292
Teil a
Die Entwicklung der Höhe von vier verschiedenen Pflanzen wurde über einen Zeitraum von 20 Tagen beobachtet und lässt sich jeweils näherungsweise durch die Funktion f, g, h bzw. p beschreiben.
- t ... Zeit ab Beobachtungsbeginn in Tagen
- f(t), g(t), h(t), p(t) ... Höhe der entsprechenden Pflanze zur Zeit t in cm
Die nachstehende Abbildung zeigt die Graphen dieser vier Funktionen.
Zur Zeit t = 20 sind diese vier Pflanzen gleich hoch.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der obigen Abbildung die mittlere Änderungsrate der Höhe in Zentimetern pro Tag im Zeitintervall [0; 20].
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Aussagen 1 und 2 jeweils die entsprechende Funktion aus A bis D zu.
[2 zu 4] [1 Punkt]
- Aussage 1: Im Zeitintervall [0; 20] ist die 1. Ableitung streng monoton steigend.
- Aussage 2: Im Zeitintervall [0; 20] ist die 2. Ableitung immer negativ.
- Lösung A: f
- Lösung B: g
- Lösung C: h
- Lösung D:p
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4339
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wein - Aufgabe B_447
Teil a
Durch die alkoholische Gärung von Traubensaft entsteht Wein. Dabei wird mithilfe von Hefepilzen der Zucker, der sich im Traubensaft befindet, in Alkohol umgewandelt. Ein Winzer misst während eines Gärungsprozesses täglich den Alkoholgehalt und erhält folgende Tabelle:
Zeit seit Beginn der Gärungsprozesses in Tagen | Alkoholgehalt in % |
1 | 0,7 |
2 | 1,4 |
3 | 2,3 |
4 | 3,6 |
5 | 5,2 |
6 | 7,3 |
7 | 9,7 |
1. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie die Bedeutung des Ausdrucks
\(\dfrac{{3,6 - 1,4}}{{4 - 2}}\)
im gegebenen Sachzusammenhang.
[1 Punkt]
Der Alkoholgehalt soll in Abhängigkeit von der Zeit t seit Beginn des Gärungsprozesses durch eine quadratische Ausgleichsfunktion angenähert werden.
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie eine Gleichung der quadratischen Ausgleichsfunktion.
[1 Punkt]
Der Zuckergehalt während des Gärungsprozesses kann für die ersten 8 Tage näherungsweise mithilfe der Funktion z beschrieben werden:
\(z\left( t \right) = 0,25 \cdot {t^2} - 4,1 \cdot t + 17{\text{ mit }}0 \leqslant t \leqslant 8\)
t | Zeit seit Beginn des Gärungsprozesses in Tagen |
z(t) |
Zuckergehalt zur Zeit t in % |
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den Zuckergehalt bei einem Alkoholgehalt von 11 %. [1 Punkt]
Aufgabe 4474
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leuchtdioden - Aufgabe A_305
Leuchtdioden (LEDs) werden häufig als Beleuchtungsmittel verwendet.
Teil b
Die Lebensdauer von LEDs ist abhängig von der Temperatur am LED-Chip. Auf einer Website ist dieser Zusammenhang grafisch dargestellt (siehe nachstehende Abbildung).
Quelle: https://www.led-studien.de/wp-content/uploads/2015/10/Lebensdauer-nach-… [16.08.2019] (adaptiert).
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die mittlere Änderungsrate der Lebensdauer bei Erhöhung der Temperatur von 140 °C auf 160 °C.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Begründen Sie, warum es sich bei der in der obigen Abbildung dargestellten Kurve nicht um den Graphen einer Funktion handeln kann.
[0 / 1 P.]