Nullstelle einer Funktion
Hier findest du folgende Inhalte
Formeln
Nullstelle einer Funktion
Jede Lösung der Gleichung f(x)=0 ist eine Nullstelle der Funktion f(x). Um die Nullstellen einer Funktion aufzufinden, setzt man die Funktion einfach gleich Null.
\(f\left( x \right) = 0\)
- Es gibt maximal so viele Nullstellen, wie der Grad der Funktion ist, bzw. ein Polynom n-ten Grades kann maximal n Nullstellen haben
- Ein Polynom von ungeradem Grad, muss mindestens eine Nullstelle haben
Regula Falsi
Die Regula Falsi ist eine Methode zur numerischen Berechnung von Nullstellen mit Hilfe von Sekanten, deren Schnittpunkt mit der x-Achse sich bei jeder Iteration der gesuchten Nullstelle annähert. Die Regula Falsi wird aus folgemden Grund auch Sekantenverfahren genannt: Von zwei Funktionswerten mit unterschiedlichem Vorzeichen wird der Schnittpunkt der Sehne mit der x-Achse bestimmt. Mit Hilfe dieses Näherungswertes für die Nullstelle wird ein neuer Funktionswert bestimmt, sodass die Funktionswerte weiterhin unterschiedliche Vorzeichen haben. In der Folge wird eine weitere Sehne gelegt und so wird der nächste Näherungswert für die Nullstelle bestimmt.
\(\eqalign{ & {x_{i + 1}} = {x_i} - f\left( {{x_n}} \right) \cdot \dfrac{{{x_i} - {x_{i - 1}}}}{{f\left( {{x_i}} \right) - f\left( {{x_{i - 1}}} \right)}} \cr & \operatorname{sgn} f\left( {{x_i}} \right) \ne \operatorname{sgn} f\left( {{x_{i - 1}}} \right) \cr}\)
Newtonsches Näherungsverfahren
Das newtonsche Näherungsverfahren ist eine Methode zur numerischen oder graphischen Bestimmung von Nullstellen.
Rechnerische Umsetzung vom newtonschen Näherungsverfahren
Für das rechnerische newtonsche Näherungsverfahren schätzt man zunächst einen Startwert x1. Für diesen Startwert x1 berechnet man den Funktionswert f(x1) und den Wert der 1. Ableitung f'(x1). Für den jeweils nächst-besseren Wert xi+1 zum Vorgängerwert xi gilt die Iterationsformel:
\(\eqalign{ & {x_{i + 1}} = {x_i} - \dfrac{{f\left( {{x_i}} \right)}}{{f'\left( {{x_i}} \right)}} \cr & f'\left( {{x_i}} \right) \ne 0 \cr & {\text{Startwert: }}{x_1} \cr}\)
Hoch- und Tiefpunkte eignen sich daher nicht als Startwert, da sonst der Nenner f'(x), auf Grund der horizontalen Tangente an den Extremwert, zu Null wird.
Graphische Umsetzung vom newtonschen Näherungsverfahren
Beim grafischen newtonschen Näherungsverfahren wird die Funktion durch eine Tangente Tg1 in einem geeignet gewählten Näherungswert x1 der tatsächlichen Nullstelle x0 ersetzt. Dort wo die Tangente Tg1 die x-Achse schneidet, wird erneut ein Näherungswert x2 bestimmt. Dabei liegt x2 schon viel näher an der tatsächlichen Nullstelle x0 als dies noch bei x1 der Fall war. Die nächste Näherung x3 wird mittels der Tangente Tg2 bestimmt. Dabei liegt x3 schon viel näher an der tatsächlichen Nullstelle x0 als dies noch bei x1 und x2 der Fall war....
Die Lösungen der Gleichung f(x)=0 stimmen mit den Nullstellen der Funktion f(x) überein. Im Intervall \(\left[ {{x_1};{x_2}} \right]\) befindet sich nur dann mindestens eine Nullstelle x0 der Funktion f(x), wenn f(x) dort stetig ist und f(x1) und f(x2) unterschiedliche Vorzeichen besitzen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Grafisches Differenzieren
Beim grafischen Differenzieren leitet man Aussagen über den Verlauf einer Funktion aus dem Verlauf ihrer 1. und 2. Ableitung ab, bzw. umgekehrt
f hat Extremstelle (HP oder TP) | f' hat NST | |
f hat Wendepunkt | f' hat Extremstelle (HP oder TP) | f'' hat NST |
f hat Sattelpunkt | f' hat HP oder TP auf x-Achse | f'' hat NST |
f steigt streng monoton | f' liegt oberhalb der x-Achse bzw. f' > 0 | |
f sinkt streng monoton | f' liegt unterhalb der x-Achse bzw. f' < 0 | |
f ist linksgekrümmt, positiv gekrümmt bzw. konvex | f' ist steigend | f'' > 0 |
f ist rechtsgekrümmt, negativ gekrümmt bzw. konkav | f' ist fallend | f'' < 0 |
Merkhilfe: NEW-Regel
N = Nullstelle; E=Extremstelle (HP, TP); W=Wendestelle
F(x) | f(x) | N | E | W | ||
f(x) | f'(x) | N | E | W | ||
f'(x) | f''(x) | N | E | W |
Zusammenhänge zwischen der Funktion, ihrer ersten und ihrer zweiten Ableitung beim grafisches Differenzieren
Funktion f(x) | Ableitung f‘(x) | Ableitung f"(x) |
f hat eineExtremstelle |
f‘ hat eine Nullstelle | keine Aussage möglich |
f hat einen Wendepunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Extremwert: Hochpunkt | f" hat eine Nullstelle |
f hat einen Wendepunktund die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Extremwert: Tiefpunkt | f" hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Hochpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist | f‘‘ hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Tiefpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist |
f‘‘ hat eine Nullstelle |
f steigt streng monoton an d.h. k>0 | f‘ liegt oberhalb der x-Achse | |
f sinkt streng monoton d.h. k<0 | f‘ liegt unterhalb der x-Achse | |
f ist symmetrisch zur y-Achse d.h. f ist eine gerade Funktion |
f‘ ist punktsymmetrisch zum Ursprung d.h. f‘ ist eine ungerade Funktion | f‘‘ ist symmetrisch zur y-Achse, d.h. f‘‘ ist eine gerade Funktion |
f ist punktsymmetrisch zum Ursprung d.h. f ist eine ungerade Funktion | f‘ ist symmetrisch zur y-Achse d.h. f‘ ist eine gerade Funktion | f‘‘ ist punktsymmetrisch zum Ursprung d.h. f‘‘ ist eine ungerade Funktion |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung | |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung |
Zusammenhang zwischen höheren Ableitungen
Je mehr Ableitungen man von einer Funktion kennt, um so genauere Aussagen kann man über den Verlauf vom Graph der Funktion machen
\(f\left( {{x_0}} \right) = 0\) | ⇒ | f(x) hat eine Nullstelle an der Stelle x0 |
\(f'\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist streng monoton wachsend |
\(f'\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist streng monoton fallend |
\(f'\left( {{x_0}} \right) = 0\) | ⇒ | f(x0) hat eine waagrechte Tangente an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) hat Tiefpunkt / lokales Minimum an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) hat Hochpunkt / lokales Maximum an der Stelle x0 |
\(f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist links / positiv / konkav gekrümmt |
\(f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist rechts / negativ / konvex gekrümmt |
\(f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Wendepunkt (Graph ändert sein Krümmungsverhalten) an der Stelle x0; Der WP ist jener Punkt, an dem f(x) die stärkste Steigung hat. |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Sattelpunkt (=Wendepunkt mit waagrechter Tangente) an der Stelle x0 |
Graph mit Hochpunkt
Graph mit Tiefpunkt
Graph mit Wendepunkt
Graph mit Sattelpunkt
Aufgaben
Aufgabe 4003
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fußballspielen im Park - Aufgabe A_250
Teil a
Roland und Julia spielen im Park Fußball. Roland legt den Ball auf die horizontale Wiese, nimmt Anlauf und schießt. Die Flugbahn des Balls kann näherungsweise durch den Graphen einer Polynomfunktion 3. Grades h beschrieben werden. Dabei wird der Ball als punktförmig angenommen.
\(h\left( x \right) = - 0,003 \cdot {x^3} + 0,057 \cdot {x^2}{\text{ mit }}x \geqslant 0\)
x | horizontale Entfernung des Balls von der Abschussstelle in Metern (m) |
h(x) | Höhe des Balls über dem Boden an der Stelle x in m |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den für diesen Sachzusammenhang größtmöglichen sinnvollen Definitionsbereich für die Funktion h. [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den höchsten Punkt der Flugbahn. [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6021
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Der Graph Gf einer in \({\Bbb R}\) definierten Funktion
\(f:x \mapsto a \cdot {x^4} + b \cdot {x^3}{\text{ mit }}a,b \in {\Bbb R}\)
Punkt O(0 | 0) einen Wendepunkt mit waagrechter Tangente.
W(1| -1) ist ein weiterer Wendepunkt von Gf .
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie mithilfe dieser Information die Werte von a und b.
2. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie Lage und Art des Extrempunkts von Gf .
Die Gerade g schneidet Gf in den Punkten W und (2 | 0).
3. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Zeichnen Sie unter Berücksichtigung der bisherigen Ergebnisse Gf sowie die Gerade g in ein Koordinatensystem ein.
4. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Gleichung der Geraden g an.
Gf und die x-Achse schließen im IV. Quadranten ein Flächenstück ein, das durch die Gerade g in zwei Teilflächen zerlegt wird.
5. Teilaufgabe d) 6 BE - Bearbeitungszeit: 14:00
Berechnen Sie das Verhältnis der Flächeninhalte dieser beiden Teilflächen.
Aufgabe 217
Faktorisieren mit Hilfe vom hornerschen Schema
Löse die Gleichung durch Faktorisieren mit Hilfe vom hornerschen Schema
\(4{x^3} - 8{x^2} + x - 2 = 0\)
Schreibe sowohl die faktorisierte Gleichung als auch deren Lösungen an.
Aufgabe 1031
AHS - 1_031 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungsfunktion
In der untenstehenden Abbildung ist der Graph der Ableitungsfunktion f' einer Funktion f dargestellt.
- Aussage 1: Die Funktion f hat im Intervall [–4; 4] drei lokale Extremstellen.
- Aussage 2: Die Funktion f ist im Intervall (2; 3) streng monoton steigend.
- Aussage 3: Die Funktion f hat im Intervall [–3; 0] eine Wendestelle.
- Aussage 4: Die Funktion f'' hat im Intervall [–3; 3] zwei Nullstellen.
- Aussage 5: Die Funktion f hat an der Stelle x = 0 ein lokales Minimum.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1039
AHS - 1_039 & Lehrstoff: FA 4.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Nullstellen einer Polynomfunktion
Wie viele verschiedene reelle Nullstellen kann eine Polynomfunktion 3. Grades haben?
Aufgabenstellung
Veranschaulichen Sie Ihre Lösungsfälle durch jeweils einen möglichen Graphen!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1087
AHS - 1_087 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grafische Lösung einer quadratischen Gleichung
Der Graph der Polynomfunktion f mit \(f\left( x \right) = {x^2} + px + q\) berührt die x-Achse. Welcher Zusammenhang besteht dann zwischen den Parametern p und q?
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Es gibt in diesem Fall _____________1_________ mit der x-Achse, deshalb gilt ______________2_____________ .
1 | |
keinen Schnittpunkt | A |
einen Schnittpunkt | B |
zwei Schnittpunkte | C |
2 | |
\(\dfrac{{{p^2}}}{4} = q\) | I |
\(\dfrac{{{p^2}}}{4} < q\) | II |
\(\dfrac{{{p^2}}}{4} > q\) | III |
Aufgabe 1436
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer Polynomfunktion
Eine reelle Funktion f mit \(f\left( x \right) = a{x^3} + b{x^2} + cx + d{\text{ }}\)mit \(a,\,\,b,\,\,c,\,\,d \in {\Bbb R}{\text{ und }}a \ne 0\) heißt Polynomfunktion dritten Grades.
- Aussage 1: Jede Polynomfunktion dritten Grades hat immer zwei Nullstellen.
- Aussage 2: Jede Polynomfunktion dritten Grades hat genau eine Wendestelle.
- Aussage 3: Jede Polynomfunktion dritten Grades hat mehr Nullstellen als lokale Extremstellen.
- Aussage 4: Jede Polynomfunktion dritten Grades hat mindestens eine lokale Maximumstelle.
- Aussage 5: Jede Polynomfunktion dritten Grades hat höchstens zwei lokale Extremstellen.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1244
AHS - 1_244 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Achsenschnittpunkte eines Funktionsgraphen
Der Graph einer reellen Funktion f hat für x0 = 3 einen Punkt mit der x-Achse gemeinsam.
- Aussage 1: \(f\left( 0 \right) = 3\)
- Aussage 2: \(f\left( 3 \right) = 3\)
- Aussage 3: \(f\left( 3 \right) = 0\)
- Aussage 4: \(f\left( 3 \right) = {x_0}\)
- Aussage 5: \(f\left( 0 \right) = - 3\)
- Aussage 6: \(f\left( {{x_0}} \right) = 3\)
Aufgabenstellung
Kreuzen Sie diejenige Gleichung an, die diesen geometrischen Sachverhalt korrekt beschreibt!
Aufgabe 1084
AHS - 1_084 & Lehrstoff: FA 5.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnittpunkt mit der y-Achse
Gegeben ist die Funktion f mit \(f\left( x \right) = c \cdot {a^x}{\text{ mit }}c \in \mathbb{R}{\text{ und a > 0}}\)
Aufgabenstellung:
Bestimmen Sie die Koordinaten des Schnittpunktes des Graphen von f mit der y-Achse!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1312
AHS - 1_312 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer Polynomfunktion
Eine Polynomfunktion dritten Grades f hat die Gleichung \(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\) mit \(a,b,c,d \in {\Bbb R}\) und \(a \ne 0\)
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Die Funktion f besitzt genau eine ______1____ , weil es genau ein \(x \in {\Bbb R}\) gibt, für das _______2______ gilt.
1 | |
Nullstelle | A |
lokale Extremstelle | B |
Wendestelle | C |
\(f\left( x \right) = 0{\text{ und }}f'\left( x \right) \ne 0\) | I |
\(f'\left( x \right) = 0{\text{ und }}f''\left( x \right) = 0\) | II |
\(f''\left( x \right) = 0{\text{ und }}f'''\left( x \right) \ne 0\) | III |
Aufgabe 1083
AHS - 1_083 & Lehrstoff: FA 4.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion 3. Grades
Gegeben ist die Polynomfunktion 3. Grades \(f\left( x \right) = a{x^3} + b{x^2} + cx + d{\text{ mit a}}{\text{,}}\,\,{\text{b}}{\text{,}}\,\,{\text{c}}{\text{,}}\,\,{\text{d}} \in \mathbb{R}{\text{ und }}a \ne 0\)
Wie viele reelle Nullstellen kann diese Funktion besitzen?
- Aussage 1: keine
- Aussage 2: mindestens eine
- Aussage 3: höchstens drei
- Aussage 4: genau vier
- Aussage 5: unendlich viele
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1012
AHS - 1_012 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynom 4. Grades
Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f, die vom Grad 4 ist.
- Aussage 1: Die Funktion besitzt drei Wendepunkte.
- Aussage 2: Die Funktion ist symmetrisch bezüglich der y-Achse.
- Aussage 3: Die Funktion ist streng monoton steigend für x ∈ [0; 4].
- Aussage 4: Die Funktion besitzt einen Wendepunkt, der gleichzeitig auch Tiefpunkt ist.
- Aussage 5: Die Funktion hat drei Nullstellen.
Aufgabenstellung:
Kreuzen Sie die beiden für die Funktion f zutreffenden Aussagen an!