BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.3
Vielfache und Teile von Einheiten mit den entsprechenden Zehnerpotenzen (inkl. der Bedeutungen der Begriffe „Nano-“ bis „Tera-“) sowie Größen als Kombination von Maßzahl und Maßeinheit verstehen und anwenden
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4029
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil e
Ein anderes aus diesem Glas gefertigtes Prisma wird von einem Lichtstrahl in 0,3 Nanosekunden (ns) durchquert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie diese Zeit in Gleitkommadarstellung in Sekunden (s) an.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4205
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil c
Der nachstehend dargestellte Graph zeigt annähernd den Geschwindigkeitsverlauf eines im Stadtgebiet fahrenden Autos.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie näherungsweise die Länge des im Zeitintervall [0; 45] zurückgelegten Weges.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie die Höchstgeschwindigkeit des Autos ab. Geben Sie das Ergebnis in km/h an.
[1 Punkt]
Aufgabe 4188
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flüssigkeitsbehälter - Aufgabe A_063
Teil a
Das nachstehend abgebildete zylindrische Gefäß mit der Höhe h = 16 dm fasst bei Befüllung bis 10 cm unter den oberen Rand 1 200 L.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Durchmesser d des Gefäßes.
[1 Punkt]
Aufgabe 4206
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eiffelturm - Aufgabe A_287
Teil a
Die Metallkonstruktion des Eiffelturms hat eine Masse von 7 300 Tonnen, das sind \(7,3 \cdot {10^x}\) Kilogramm.
1. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie den fehlenden Exponenten.
[1 Punkt]
Die Masse m ist das Produkt aus Dichte ϱ und Volumen V, also \(m = \rho \cdot V\). Das Metall des Eiffelturms hat eine Dichte von 7 800 kg/m3. Die Grundfläche des Eiffelturms ist quadratisch und hat eine Seitenlange von 125 m. Stellen Sie sich vor, die Metallkonstruktion des Eiffelturms wurde eingeschmolzen und zu einem Quader mit der gleichen Grundfläche gegossen.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Höhe dieses Quaders in Zentimetern.
[2 Punkte]
Aufgabe 4209
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fressverhalten von Furchenwalen - Aufgabe A_288
Teil a
Bei einem Beutestoß nehmen Furchenwale mit weit geöffnetem Maul eine große Menge Meerwasser und die darin enthaltene Beute auf. Forscher/innen beobachteten dieses Fressverhalten. Sie ermittelten mithilfe von Sensoren die Geschwindigkeit des Furchenwals bei einem Beutestoß, die Größe der Maulöffnung und das gesamte Wasservolumen, das dabei aufgenommen wird.
Die Geschwindigkeit eines Furchenwals bei einem Beutestoß, der insgesamt 20 s dauert, kann näherungsweise durch die Funktion v beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Schätzen Sie die Länge s desjenigen Weges ab, der bei diesem Beutestoß zurückgelegt wird.
[1 Punkt]
Ein Forscher behauptet: „Der Furchenwal erreicht bei diesem Beutestoß eine maximale Geschwindigkeit von 15 km/h.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass diese Behauptung falsch ist.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4195
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil a
Um die Gehzeit für eine Wanderung zu ermitteln, kann die folgende Faustregel angewendet werden: „Die Höhendifferenz in Metern dividiert man durch 400, die Horizontalentfernung in Kilometern dividiert man durch 4. Addiert man diese beiden Ergebnisse, so erhält man die Gehzeit in Stunden.“
1. Teilaufgabe - Bearbeitungszeit 5:40
Übertragen Sie diese Faustregel in eine Formel für die Gehzeit t.
[1 Punkt]
Verwenden Sie dabei die folgenden Bezeichnungen:
- h ... Höhendifferenz in m
- x ... Horizontalentfernung in km
- t ... Gehzeit in h
- t = gesucht
Jemand legt bei einer Wanderung eine Horizontalentfernung von 6,7 km zurück und benötigt dafür eine Gehzeit von 3 h 15 min.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die dabei überwundene Höhendifferenz mithilfe der angegebenen Faustregel.
[1 Punkt]
Aufgabe 4118
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Höhe der Wolkenuntergrenze - Aufgabe B_110
Die Höhe der Wolkenuntergrenze kann auf verschiedene Arten näherungsweise bestimmt werden.
Teil b
Ein Ceilometer ist ein Messgerät, mit dem man aufgrund einer Lichtlaufzeitmessung die Höhe der Wolkenuntergrenze bestimmen kann. Dabei gilt:
\(h = \dfrac{{c \cdot t}}{2}\)
mit
h | Höhe der Wolkenuntergrenze in m |
t | Lichtlaufzeit in s |
\(c \approx 300\,\,000\,\,000\,\,{\text{m/s}}\) | Lichtgeschwindigkeit |
Das Gerät misst eine Lichtlaufzeit von \(10\mu s\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie denjenigen Ausdruck an, mit dem die Höhe der Wolkenuntergrenze h in Metern korrekt ermittelt wird.
[1 aus 5] [1 Punkt]
- Aussage 1: \(\dfrac{{300 \cdot {{10}^{ - 6}} \cdot 10 \cdot {{10}^{ - 6}}}}{2}\)
- Aussage 2: \(\dfrac{{300 \cdot {{10}^6} \cdot 10 \cdot {{10}^{ - 9}}}}{2}\)
- Aussage 3: \(\dfrac{{3 \cdot {{10}^{ - 8}} \cdot {{10}^5}}}{2}\)
- Aussage 4: \(\dfrac{{3 \cdot {{10}^8} \cdot 10 \cdot {{10}^9}}}{2}\)
- Aussage 5: \(\dfrac{{3 \cdot {{10}^8} \cdot {{10}^{ - 5}}}}{2}\)
Aufgabe 4159
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Die Adria-Wien-Pipeline - Aufgabe A_280
Österreich muss einen Großteil seines Erdölbedarfs durch Importe von Rohöl decken. Diese Importe werden vorwiegend über die Adria-Wien-Pipeline durchgeführt, die von Triest nach Wien-Schwechat führt.
Teil b
Modellhaft betrachtet ist die Pipeline ein Drehzylinder mit dem Durchmesser d und der Höhe l. Der Innendurchmesser der Pipeline betragt d = 457,2 mm. Die Lange der Pipeline betragt rund l = 416 km. In der Erdölindustrie wird für das Volumen von Rohöl häufig die Einheit Barrel verwendet. Es gilt: 1 Barrel ≈ 0,159 m3
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie, wie viele Barrel Rohöl die vollständig befüllte Pipeline fasst.
[2 Punkte]
Aufgabe 4163
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C - Aufgabe A_281
Teil c
Nach der Einnahme einer Vitamin-C-Tablette steigt die Vitamin-C-Konzentration im Blut zunächst an und sinkt danach wieder ab. Die Funktion c beschreibt näherungsweise den zeitlichen Verlauf der Vitamin-C-Konzentration im Blut einer bestimmten Person.
\(c\left( t \right) = 24 \cdot \left( {{e^{ - 0,0195 \cdot t}} - {e^{ - 1,3 \cdot t}}} \right) + 3\)
- t ... Zeit seit der Einnahme der Vitamin-C-Tablette in h
- c(t) ... Vitamin-C-Konzentration im Blut zur Zeit t in Mikrogramm pro Milliliter (μg/ml)
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass die maximale Vitamin-C-Konzentration im Blut der Person gerundet \(25,18\,\,\mu g/ml\) beträgt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie denjenigen Ausdruck an, der die maximale Vitamin-C-Konzentration in mg/L angibt.
[1 aus 5] [1 Punkt]
- Aussage 1: 0,02518 mg/L
- Aussage 2: 25,18 mg/L
- Aussage 3: 25 180 mg/L
- Aussage 4: 0,00002518 mg/L
- Aussage 5: 25 180 000 mg/L
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4167
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnverkehr in Österreich - Aufgabe A_283
Teil a
Eine Bahnfahrt von Wien nach Graz dauert 2 Stunden und 35 Minuten. Die mittlere Reisegeschwindigkeit beträgt dabei rund 81,83 km/h. Im Jahr 2026 soll der Semmering-Basistunnel fertiggestellt werden. Dadurch wird sich die Fahrtstrecke um 13,7 Kilometer und die Fahrtdauer um 50 Minuten verkürzen.
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die mittlere Reisegeschwindigkeit zwischen Wien und Graz für die verkürzte Fahrt.
[2 Punkte]
Aufgabe 4176
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Pauliberg - Aufgabe A_067
Der Pauliberg ist Österreichs jüngster erloschener Vulkan und ein beliebtes Ausflugsziel im Burgenland.
Teil a
Beim Pauliberg befindet sich eine Fundstätte von großen Brocken aus vulkanischem Gestein. Für die nachfolgenden Aufgaben wird vereinfacht von kugelförmigen Brocken ausgegangen. Ein bestimmter Brocken hat eine Masse von 4,5 t. Die Dichte des Gesteins beträgt 3 000 kg/m3. Die Masse m ist das Produkt aus Volumen V und Dichte \(\rho\) also: \(m = V \cdot \rho \)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Durchmesser dieses Brockens.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Von zwei solchen Brocken mit gleicher Dichte und verschiedener Masse kennt man jeweils den Durchmesser:
Brocken 1 | Brocken 2 | |
Masse in kg | m1 | m2 |
Durchmesser | 1 m | 1 dm |
Kreuzen Sie die zutreffende Aussage an.
- Aussage 1: m1 ist das Zehnfache von m2.
- Aussage 2: m1 und m2 stehen im Verhältnis 10 000 : 1.
- Aussage 3: \({m_2} = 1000 \cdot \pi \cdot {m_1}\)
- Aussage 4: m1 und m2 stehen im Verhältnis 100 : 1.
- Aussage 5: \({m_1} = 1000 \cdot {m_2}\)
[1 aus 5] [1 Punkt]
Aufgabe 4241
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kühe auf der Weide - Aufgabe A_141
Teil b
Um zu ermitteln, wie viele Kühe auf einer Weide gehalten werden können, ist der Zuwachs der Trockenmasse von Gras auf dieser Weide von Bedeutung. Für eine bestimmte Weide wurde auf Basis mehrjähriger Messungen der nachstehend dargestellte Graph erstellt.
1 Hektar (ha) = 10 000 m2
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht.
[Lückentext]
[1 Punkt]
Im Zeitintervall [0; 240] liefert diese Weide rund ____1____ ____ 2_____ Trockenmasse von Gras.
- Lücke 1_1: 90
- Lücke 1_2: 900
- Lücke 1_3: 9000
- Lücke 2_1: \(\dfrac{{{\rm{kg}}}}{{{{\rm{m}}^{\rm{2}}}}}\)
- Lücke 2_2: \(\dfrac{{{\rm{kg}}}}{{{\rm{ha}}}}\)
- Lücke 2_3: \(\dfrac{{\rm{t}}}{{{\rm{ha}}}}\)