Mathematik Zentralmatura BHS - Mai 2020 - kostenlos vorgerechnet
Die Beispiele aus diesem BHS Maturatermin werden vorgerechnet und verständlich erklärt.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4206
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eiffelturm - Aufgabe A_287
Teil a
Die Metallkonstruktion des Eiffelturms hat eine Masse von 7 300 Tonnen, das sind \(7,3 \cdot {10^x}\) Kilogramm.
1. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie den fehlenden Exponenten.
[1 Punkt]
Die Masse m ist das Produkt aus Dichte ϱ und Volumen V, also \(m = \rho \cdot V\). Das Metall des Eiffelturms hat eine Dichte von 7 800 kg/m3. Die Grundfläche des Eiffelturms ist quadratisch und hat eine Seitenlange von 125 m. Stellen Sie sich vor, die Metallkonstruktion des Eiffelturms wurde eingeschmolzen und zu einem Quader mit der gleichen Grundfläche gegossen.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Höhe dieses Quaders in Zentimetern.
[2 Punkte]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4207
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eiffelturm - Aufgabe A_287
Teil b
Im Jahr 1950 besuchten rund 1 027 000 Personen den Eiffelturm, im Jahr 1980 waren es rund 3 594 000 Personen. Für den Zeitraum von 1950 bis 1980 kann die Anzahl der Personen, die den Eiffelturm pro Jahr besuchten, näherungsweise durch eine lineare Funktion b beschrieben werden.
t … Zeit in Jahren mit t = 0 für das Jahr 1950
b(t) … Anzahl der Personen, die den Eiffelturm pro Jahr besuchten, zur Zeit t
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der Funktion b. Wählen Sie t = 0 für das Jahr 1950.
[1 Punkt]
Aufgabe 4208
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eiffelturm - Aufgabe A_287
Teil c
Von Punkt P aus sieht man den höchsten Punkt des H Meter hohen Eiffelturms unter dem Höhenwinkel α und die h Meter hohe Spitze unter dem Sehwinkel β (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht. [Lückentext]
[1 Punkt]
Die Höhe _____1_____ ist durch den Ausdruck _____2____ gegeben
1. Lücke:
- Aussage A: H
- Aussage B: h
- Aussage C: H-h
2. Lücke:
- Aussage I: \(d \cdot \tan \left( {\alpha + \beta } \right)\)
- Aussage II: \(d \cdot \tan \left( {\alpha - \beta } \right)\)
- Aussage III: \(d \cdot \tan \left( \beta \right)\)
Aufgabe 4209
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fressverhalten von Furchenwalen - Aufgabe A_288
Teil a
Bei einem Beutestoß nehmen Furchenwale mit weit geöffnetem Maul eine große Menge Meerwasser und die darin enthaltene Beute auf. Forscher/innen beobachteten dieses Fressverhalten. Sie ermittelten mithilfe von Sensoren die Geschwindigkeit des Furchenwals bei einem Beutestoß, die Größe der Maulöffnung und das gesamte Wasservolumen, das dabei aufgenommen wird.
Die Geschwindigkeit eines Furchenwals bei einem Beutestoß, der insgesamt 20 s dauert, kann näherungsweise durch die Funktion v beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Schätzen Sie die Länge s desjenigen Weges ab, der bei diesem Beutestoß zurückgelegt wird.
[1 Punkt]
Ein Forscher behauptet: „Der Furchenwal erreicht bei diesem Beutestoß eine maximale Geschwindigkeit von 15 km/h.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass diese Behauptung falsch ist.
[1 Punkt]
Aufgabe 4210
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fressverhalten von Furchenwalen - Aufgabe A_288
Teil b
Die Größe der Maulöffnung bei einem Beutestoß eines Furchenwals kann näherungsweise durch die Funktion m beschrieben werden:
\(m\left( t \right) = \dfrac{1}{{175}} \cdot \left( { - 17 \cdot {t^4} + 204 \cdot {t^3} - 922,5 \cdot {t^2} + 1863 \cdot t} \right)\)
t ... Zeit seit Beginn des Öffnens des Mauls in s
m(t) ... Größe der Maulöffnung zur Zeit t in m2
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die maximale Größe der Maulöffnung.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4211
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fressverhalten von Furchenwalen - Aufgabe A_288
Teil c
Die Funktion w beschreibt näherungsweise das gesamte Wasservolumen, das ein Furchenwal während eines Beutestoßes aufnimmt (siehe nachstehende Abbildung).
t ... Zeit seit Beginn der Wasseraufnahme in s
w(t) ... gesamtes aufgenommenes Wasservolumen bis zur Zeit t in m3
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie den Graphen der zugehörigen Ableitungsfunktion w‘ an
[1 Punkt]
- Ableitungsfunktion 1:
- Ableitungsfunktion 2:
- Ableitungsfunktion 3:
- Ableitungsfunktion 4:
- Ableitungsfunktion 5:
Aufgabe 4212
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kochzeit von Eiern - Aufgabe A_289
Teil a
Der Physiker Werner Gruber hat mit Hühnereiern experimentiert. Er hat festgestellt, dass die Kochzeit von Eiern unter anderem abhängt von:
- dem Durchmesser d des Eies (siehe nebenstehende Abbildung)
- der Lagertemperatur x vor dem Kochen
Datenquelle: Gruber, Werner: Die Genussformel. Kulinarische Physik. Salzburg: Ecowin 2008, S. 79 – 84.
Ein Ei soll weich gekocht werden. Die Kochzeit kann in Abhängigkeit vom Durchmesser d unter bestimmten Bedingungen näherungsweise durch die quadratische Funktion W beschrieben werden:
\(W\left( d \right) = a \cdot {d^2}\)
d | Durchmesser des Eies in mm |
W(d) | Kochzeit bei einem Durchmesser d in min |
a | positiver Parameter |
Bei einem Durchmesser von 45 mm ergibt sich eine Kochzeit von 5 min.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Parameter a.
[1 Punkt]
Zwei Eier mit unterschiedlichen Durchmessern werden weich gekocht. Der Durchmesser von Ei B ist um 10 % größer als der Durchmesser von Ei A.
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass die Kochzeit von Ei B um mehr als 10 % länger ist als die Kochzeit von Ei A.
[1 Punkt]
Aufgabe 4213
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kochzeit von Eiern - Aufgabe A_289
Teil b
Die quadratische Funktion Z beschreibt näherungsweise die Kochzeit für ein weich gekochtes Ei in Abhängigkeit von der Lagertemperatur:
\(Z\left( x \right) = - 0,024 \cdot {x^2} - 2,16 \cdot x + 252\)
x | Lagertemperatur in °C |
Z(x) | Kochzeit bei der Lagertemperatur x in s |
Ein Ei wird anstatt bei einer Temperatur von 4 °C (Kühlschranktemperatur) bei einer Temperatur von 20 °C (Raumtemperatur) gelagert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, um wie viele Sekunden die Kochzeit dadurch kürzer ist.
[1 Punkt]
Aufgabe 4214
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kochzeit von Eiern - Aufgabe A_289
Teil c
Die Kochzeit für weich gekochte Eier ist unter bestimmten Bedingungen annähernd normalverteilt mit dem Erwartungswert μ = 5,5 min und der Standardabweichung σ = 0,35 min.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie dasjenige um den Erwartungswert symmetrische Intervall, in dem die Kochzeit für ein zufällig ausgewähltes Ei mit einer Wahrscheinlichkeit von 90 % liegt.
[1 Punkt]
Die Kochzeit für hart gekochte Eier ist unter bestimmten Bedingungen annähernd normalverteilt mit dem Erwartungswert μ = 9 min und der Standardabweichung σ = 0,5 min. Der Graph der zugehörigen Dichtefunktion ist in der nachstehenden Abbildung dargestellt.
X ... Kochzeit für hart gekochte Eier in min
2. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf diese Dichtefunktion nicht zutreffende Aussage an.
[1 aus 5] [1 Punkt]
- Aussage 1: \(P\left( {X \ge 9} \right) = 0,5\)
- Aussage 2: \(P\left( {X \ge 10} \right) = P\left( {X \le 8} \right)\)
- Aussage 3: \(P\left( {8,5 \le X \le 9,5} \right) \approx 0,68\)
- Aussage 4: \(P\left( {8 \le X \le 10} \right) = 1 - P\left( {X \ge 10} \right)\)
- Aussage 5: \(P\left( {7 \le X \le 11} \right) \approx 1\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4215
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahnen - Aufgabe A_290
Teil a
Die Wägen von Standseilbahnen fahren auf Schienen und können große Steigungen bewältigen. Eine bestimmte Standseilbahn hat eine konstante Steigung von 40 %. Der Streckenverlauf dieser Bahn soll im unten stehenden Koordinatensystem dargestellt werden. Die beiden Achsen des Koordinatensystems haben die gleiche Skalierung. Die Talstation der Bahn liegt im Koordinatenursprung. Nur einer der Punkte A, B, C, D und E kommt als Bergstation der Bahn infrage.
- Aussage 1: A
- Aussage 2: B
- Aussage 3: C
- Aussage 4: D
- Aussage 5: E
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie denjenigen Punkt an, der als Bergstation infrage kommt.
[1 aus 5] [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, welchen Höhenunterschied ein Wagen dieser Bahn überwindet, wenn er von der Talstation bis zur Bergstation eine Fahrstrecke von 180 m zurücklegt.
[1 Punkt]
Aufgabe 4216
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahnen - Aufgabe A_290
Teil b
Bei den meisten Standseilbahnen gibt es in der Mitte der Strecke eine Ausweichstelle, bei der der talwärts fahrende Wagen dem bergwärts fahrenden Wagen ausweichen kann. In der nachstehenden Abbildung ist eine solche Ausweichstelle modellhaft dargestellt.
Der Funktionsgraph von f schließt an den Stellen 0 und 3 knickfrei an die eingezeichneten Geradenstücke an. „Knickfrei“ bedeutet, dass die Funktionen an denjenigen Stellen, an denen ihre Graphen aneinander anschließen, den gleichen Funktionswert und die gleiche Steigung haben. Für die Funktion f gilt:
\(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
x, f(x) … Koordinaten in m
Die Koeffizienten a, b, c und d können mithilfe eines linearen Gleichungssystems berechnet werden. Der Ansatz für zwei der benötigten Gleichungen lautet:
\(\begin{array}{l} Gl.1:\,\,\,27 \cdot a + 9 \cdot b + 3 \cdot c + d = {\rm{Zah}}{{\rm{l}}_1}\\ Gl.2:\,\,\,27 \cdot a + 6 \cdot b + c = {\rm{Zah}}{{\rm{l}}_2} \end{array}\)
1. Teilaufgabe - Bearbeitungszeit 11:20
Vervollständigen Sie mithilfe der obigen Abbildung die beiden Gleichungen, indem Sie jeweils die fehlende Zahl in das dafür vorgesehene Kästchen schreiben. [
2 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung den Wert des Koeffizienten d ab.
[1 Punkt]
Aufgabe 4217
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahnen - Aufgabe A_290
Teil c
Der Umsatz des Weltmarktführers im Seilbahnbau betrug im Geschäftsjahr 2015/16 rund 834 Millionen Euro und lag somit um 5,04 % über dem Umsatz im Geschäftsjahr 2014/15.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Umsatz im Geschäftsjahr 2014/15 in Millionen Euro.
[1 Punkt]