Exponentielle Abnahme
Hier findest du folgende Inhalte
Formeln
Natürliche Exponentialfunktion
Die natürliche Exponentialfunktion, auch e-Funktion, Euler’sche Funktion genannt, ist eine spezielle Exponentialfunktion, nämlich eine mit der Euler’schen Zahl e=2,718 als Basis
\(\eqalign{ & f\left( x \right) = {e^x} \cr & f\left( 0 \right) = {e^0} = 1 \cr & f'\left( x \right) = {e^x} \cr}\)
- Die natürliche Exponentialfunktion ist eine speziell Exponentialfunktion, nämlich mit der Euler’schen Zahl e=2,718 als Basis: \(f\left( x \right) = {e^x} = {a^x}{\text{ mit }}a = e = 2,7182818..\)
- Gegenüber \(f\left( x \right) = {a^x}\) zeichnet sich die e-Funktion durch ihre Steigung aus:
- Als einzige Funktion f(x) ist ihre Ableitung f'(x) identisch mit der Funktion selbst.
- Die Stammfunktion F(x) ist ebenfalls - die um c auf der x-Achse verschobene - Funktion f(x)
- \(f'\left( x \right) = f\left( x \right) = F(x) = {e^x}\)
- \(f'\left( {x = 0} \right) = {e^0};\,\,\,\,\,f'\left( {x = 1} \right) = {e^1};\,\,\,\,\,f'\left( {x = 2} \right) = {e^2}\)
- Graph - die Exponentialkurve - verläuft durch \(P(0\left| e \right.),\,\,\,\,\,{Q_1}(1\left| e \right.),\,\,\,\,\,{Q_2}\left( {2\left| {{e^2}} \right.} \right),{\text{ usw}}.\)
- Sie ist die Umkehrfunktion der ln-Funktion
- Sie dient zur Beschreibung von Wachstums- bzw. Zerfallsprozessen.
Natürliche Exponentialfunktion mit Anfangswert N0
Exponentielles Wachstum, exponentieller Zerfall
\(N\left( t \right) = {N_0} \cdot {e^{\lambda t}}\)
- N0 ... Startwert, Startwert
- \(\lambda {\text{ > 0}}\) - positives l: Wachstumskonstante
- \(\lambda {\text{ < 0}}\) - negatives l: Zerfallskonstante
Natürliche Exponentialfunktion - Illustration zeigt Wachstum für \(\lambda = + 1\) bzw. Zerfall für \(\lambda = - 1\)
Natürliche Exponentialfunktion - Interaktive Illustration
Die interaktive Illustration einer natürlichen Exponentialfunktion zeigt die Wirkung von \(\lambda\) und von N0 auf der Website von Geogebra.org:
Illustration auf GeoGebra.org anzeigen
- Regler \(\lambda\): Entscheidet über Wachstum oder Zerfall
- Regler N0: Entscheidet über Startwert
Wenn Du obigem Link folgst, verlässt Du unsere Website. Die Website des Fremdanbieters wird sich in einem neuen Fenster öffnen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1318
AHS - 1_318 & Lehrstoff: FA 5.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pulver
Ein Pulver löst sich in einer Flüssigkeit annähernd exponentiell auf. Die Menge an Pulver, die in Abhängigkeit von der Zeit t noch vorhanden ist, wird für einen gewissen Zeitraum durch die Gleichung \(N\left( t \right) = {N_0} \cdot {0,6^t}\) beschrieben. N0 gibt die ursprüngliche Menge an Pulver in Milligramm an, die Zeit t wird in Sekunden gemessen.
Aufgabenstellung
Geben Sie an, wie viel Prozent der ursprünglichen Pulvermenge N0 nach drei Sekunden noch vorhanden sind!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1020
AHS - 1_020 & Lehrstoff: FA 5.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentielle Abnahme
Die angegebenen Funktionsgleichungen beschreiben exponentielle Zusammenhänge.
- Aussage 1: \(f\left( x \right) = 100 \cdot {1,2^x}\)
- Aussage 2: \(f\left( x \right) = 100 \cdot {e^{0,2x}}\)
- Aussage 3: \(f\left( x \right) = 100 \cdot {0,2^x}\)
- Aussage 4: \(f\left( x \right) = 100 \cdot {0,2^{ - x}}\)
- Aussage 5: \(f\left( x \right) = 100 \cdot {e^{ - 0,2x}}\)
Aufgabenstellung:
Kreuzen Sie die beiden Funktionsgleichungen an, die eine exponentielle Abnahme beschreiben!
Aufgabe 1649
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit
Die Masse m(t) einer radioaktiven Substanz kann durch eine Exponentialfunktion m in Abhängigkeit von der Zeit t beschrieben werden. Zu Beginn einer Messung sind 100 mg der Substanz vorhanden, nach vier Stunden misst man noch 75 mg dieser Substanz.
Aufgabenstellung:
Bestimmen Sie die Halbwertszeit tH dieser radioaktiven Substanz in Stunden!
Aufgabe 1696
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 08. Mai 2019 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wirkstoff
Die Abnahme der Menge des Wirkstoffs eines Medikaments im Blut lässt sich durch eine Exponentialfunktion modellieren. Nach einer Stunde sind 10 % der Anfangsmenge des Wirkstoffs abgebaut worden.
Aufgabenstellung:
Berechnen Sie, welcher Prozentsatz der Anfangsmenge des Wirkstoffs nach insgesamt vier Stunden noch im Blut vorhanden ist!
____ % der Anfangsmenge
[0 / 1 Punkt]
Aufgabe 1864
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Medikament
Der schmerzlindernde Wirkstoff eines Medikaments wird im Körper eines bestimmten Patienten annähernd exponentiell abgebaut. Dabei nimmt die Wirkstoffmenge pro Stunde um 8 % ab.
Zum Zeitpunkt t = 0 beträgt die Wirkstoffmenge 700 Mikrogramm.
Aufgabenstellung:
Ermitteln Sie, nach welcher Zeit (in h) die Wirkstoffmenge im Körper des Patienten auf 100 Mikrogramm gesunken ist.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4161
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C - Aufgabe A_281
Teil a
Der Vitamin-C-Gehalt eines Apfels nimmt nach der Ernte exponentiell ab. Alle 4 Wochen nimmt der Vitamin-C-Gehalt um 20 % bezogen auf den Wert zu Beginn dieser 4 Wochen ab. Ein bestimmter Apfel hat bei der Ernte einen Vitamin-C-Gehalt von 18 mg. Der Vitamin-C-Gehalt dieses Apfels in Milligramm soll in Abhängigkeit von der Zeit t in Wochen beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Funktion. Wählen Sie t = 0 für den Zeitpunkt der Ernte.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Vitamin-C-Gehalt dieses Apfels 36 Wochen nach der Ernte.
[1 Punkt]
Aufgabe 4270
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenlicht und Vitamin D - Aufgabe A_300
Für die Bildung von Vitamin D in der Haut ist Sonnenlicht nötig.
Teil b
Die Vitamin-D-Konzentration in Claudias Blut sinkt ab Herbstbeginn und lässt sich durch die Funktion N beschreiben.
\(N\left( t \right) = {N_0} \cdot {e^{ - 0,0173 \cdot t}}\)
- t ... Zeit ab Herbstbeginn in Tagen
- N(t) ... Vitamin-D-Konzentration in Claudias Blut zur Zeit t in Nanogramm pro Milliliter (ng/ml)
- N0 ... Vitamin-D-Konzentration in Claudias Blut zu Herbstbeginn in ng/ml
Der Körper ist ausreichend mit Vitamin D versorgt, wenn dessen Konzentration im Blut mindestens 30 ng/ml beträgt. Claudia mochte wissen, wie hoch die Vitamin-D-Konzentration im Blut zu Herbstbeginn mindestens sein muss, damit ihr Körper nach 60 Tagen noch ausreichend mit Vitamin D versorgt ist.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die dafür notwendige Vitamin-D-Konzentration zu Herbstbeginn.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Im obigen Modell beträgt die Halbwertszeit beim Abbau von Vitamin D in Claudias Körper 40 Tage.
Kreuzen Sie die zutreffende Aussage an. [1 aus 5]
[0 / 1 P.]
- Aussage 1: Nach 80 Tagen ist noch die Hälfte von N0 vorhanden.
- Aussage 2: Nach 100 Tagen ist noch ein Drittel von N0 vorhanden.
- Aussage 3: Nach 120 Tagen ist noch ein Viertel von N0 vorhanden.
- Aussage 4: Nach 140 Tagen ist noch ein Achtel von N0 vorhanden.
- Aussage 5: Nach 160 Tagen ist noch ein Sechzehntel von N0 vorhanden.
Aufgabe 4297
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2016 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Klimawandel und Ozon - Aufgabe A_225
Teil b
Bei einer Messstation im Bereich des südlichen Polarkreises kann die Ozonmenge pro Quadratmeter in Abhängigkeit von der Zeit für einen bestimmten Zeitraum näherungsweise durch die Funktion N beschrieben werden:
\(N\left( t \right) = {N_0} \cdot {0,9917^t}\)
- t ... Zeit in Jahren
- N(t) ... Ozonmenge pro Quadratmeter zur Zeit t
- N0 ... Ozonmenge pro Quadratmeter zur Zeit t = 0
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie, um wie viel Prozent die Ozonmenge pro Quadratmeter jährlich abnimmt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Die Gleichung \(0,5 = {0,9917^t}\) wird gelöst.
Beschreiben Sie die Bedeutung der Lösung dieser Gleichung im gegebenen Sachzusammenhang.
[1 Punkt]
Aufgabe 4318
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit des Wissens - Aufgabe A_159
Das zu einem bestimmten Zeitpunkt erworbene Wissen verliert im Laufe der Zeit aufgrund gesellschaftlicher Veränderungen, technologischer Neuerungen etc. an Aktualität und Gültigkeit („Relevanz“). Die nachstehende Abbildung beschreibt die Abnahme der Relevanz des Wissens in verschiedenen Fachbereichen. Für jedes Jahr wird angegeben, wie viel Prozent des ursprünglichen Wissens noch relevant sind.
Teil b
Die Relevanz von Technologiewissen nimmt mit einer Halbwertszeit von 3 Jahren exponentiell ab.
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie diejenige Exponentialfunktion auf, die die Relevanz des Technologiewissens in Abhängigkeit von der Zeit beschreibt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, nach welcher Zeit die Relevanz des Technologiewissens auf 1 % der anfänglichen Relevanz abgesunken ist.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4319
tandardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbwertszeit des Wissens - Aufgabe A_159
Das zu einem bestimmten Zeitpunkt erworbene Wissen verliert im Laufe der Zeit aufgrund gesellschaftlicher Veränderungen, technologischer Neuerungen etc. an Aktualität und Gültigkeit („Relevanz“).
Teil c
Die Relevanz des Hochschulwissens lässt sich durch folgende Funktion N beschreiben:
\(N\left( t \right) = 100 \cdot {e^{ - 0,0693 \cdot t}}\)
- t ... Zeit in Jahren
- N(t) ... Relevanz des Hochschulwissens zur Zeit t in % des anfänglichen Hochschulwissens
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, um wie viel Prozent die Relevanz des Hochschulwissens nach 7 Jahren bereits abgenommen hat.
[1 Punkt]