Computer Algebra Systeme und Künstliche Intelligenz
Hier findest du folgende Inhalte
Grundkompetenzen
Mathematik Lernen mit Computer Algebra Systemen und Künstlicher Intelligenz (KI, AI)
Computer Algebra Systeme
Computer-Algebra-Systeme (CAS) sind Softwareprogramme, welche die symbolische oder numerische Berechnung mathematischer Aufgabenstellungen ermöglichen.
- Bei der symbolischen Berechnung werden mathematische Ausdrücke so umgeformt oder berechnet bis ein exaktes allgemeingültiges Resultat vorliegt, ohne dass dabei für die Variablen konkrete Werte eingesetzt werden.
- Bei der numerischen Berechnung wird die (näherungsweise) Lösung eines mathematischen Ausdrucks durch schrittweise Annäherung anhand spezifischer numerischer Werte iterativ ermittelt. Es werden dabei konkrete Zahlen für die Variablen eingesetzt und die resultierenden Ausdrücke ausgewertet. Auf die sehr rechenintensive numerische Berechnung greift man zurück, wenn eine symbolische Berechnung nicht sinnvoll möglich ist.
Beliebte Computer-Algebra-Systeme
- Mathematica wurde von Wolfram Research entwickelt und ist ein umfassendes CAS, das eine breite Palette an mathematischen und rechnerischen Fähigkeiten speziell für symbolische Berechnungen bietet.
- Maple ist ein leistungsstarkes CAS, das von Maplesoft entwickelt wurde. Es bietet umfangreiche Werkzeuge für symbolische Berechnungen, mathematische Visualisierung und Programmierung.
- MATLAB ist in erster Linie als numerische Rechenumgebung bekannt, umfasst aber über seine Symbolic Math Toolbox auch Funktionen für symbolische Berechnungen. Es kann durch Simulink ergänzt werden, welches speziell zur Modellierung von technischen, physikalischen oder finanzmathematischen Aufgabenstellungen optimiert ist.
Obige Computer-Algebra-Systeme werden in verschiedenen Bereichen eingesetzt, darunter Mathematik, Physik, Ingenieurwesen, Informatik und Bildung. Sie helfen Forschern, Wissenschaftlern, Ingenieuren und Studenten bei der Durchführung komplexer Berechnungen, der Erforschung mathematischer Konzepte und der Lösung komplizierter mathematischer Probleme.
Bei den oben genannten CAS handelt es sich um kommerzielle Software deren Vollversion auf Grund der Anschaffungskosten für Nutzer mit begrenzten Budgets kaum zugänglich sind. Die Software ist nicht für ad-hoc Einsätze gedacht, da sie eine umfangreiche Einarbeitung erfordern.
Beliebte Programmiersprachen für numerische Berechnungen
- Python als eine weit verbreitete und lizenzlos zugängliche Programmiersprache, die sich leicht erlernen und für numerische Berechnungen verwenden lässt, speziell um große Datenmengen zu sammeln, zu strukturieren, zu analysieren und zu visualisieren. NumPy- und SciPy-Bibliotheken bieten einen umfangreichen Satz numerischer Funktionen und Algorithmen, einschließlich linearer Algebra, Optimierung, Interpolation und mehr. Bei rechenintensiven Aufgaben kann Python im Vergleich zu kompilierten Sprachen langsamer sein. Obwohl NumPy und SciPy leistungsstark sind, bieten sie möglicherweise nicht das gleiche Leistungsniveau wie spezialisierte numerische CAS-Systeme
- R ist eine beliebte Sprache für statistische Berechnungen und Datenanalysen mit umfangreichen Paketen und Bibliotheken. Es bietet eine breite Palette an Statistikfunktionen und Visualisierungsmöglichkeiten. R verfügt über eine starke Community und eine Fülle an Ressourcen zum Lernen und zur Unterstützung. Für allgemeine numerische Berechnungen, die über Statistik und Datenanalyse hinausgehen, ist R möglicherweise nicht so gut geeignet wie spezialisierte numerische CAS-Systeme.
Beliebte Computer-Algebra-Systeme für ad-hoc Einsätze
- GeoGebra ist vor allem als dynamische Mathematiksoftware bekannt, die verschiedene mathematische Darstellungen integriert, darunter Geometrie, Algebra, Analysis und Statistik. Es bietet Benutzern eine Plattform zum Erstellen und Bearbeiten geometrischer Objekte, zum Plotten von Funktionen und zum Durchführen symbolischer Berechnungen mithilfe des integrierten CAS. GeoGebra legt Wert auf interaktives Lernen und Visualisierung und ist daher bei Pädagogen und Studenten beliebt.
Mit den CAS-Funktionen von GeoGebra können Benutzer symbolische Berechnungen durchführen, beispielsweise Ausdrücke vereinfachen, Gleichungen lösen, Ableitungen finden und Integrale auswerten. Allerdings ist die CAS-Funktionalität im Vergleich zu dedizierten CAS-Tools eingeschränkt. Auch die Möglichkeiten komplexe numerische Berechnungen durchzuführen können auf Grund der zugrundeliegenden Spezialisierung nicht mit Wolfram Alpha oder Wolfram Mathematik mithalten. GeoGebra‘s CAS ist in eine umfassenderen mathematischen Visualisierungs- und Explorationsfunktionen integriert und ermöglicht es Benutzern, symbolische Berechnungen mit dynamischen geometrischen Konstruktionen und Visualisierungen zu verbinden. - Wolfram Alpha ist eine rechnergestützte Wissensmaschine, die darauf ausgelegt ist, Fragen zu beantworten und detaillierte Informationen zu einem breiten Themenspektrum bereitzustellen. Es beinhaltet ein leistungsstarkes CAS, das über traditionelle mathematische Berechnungen hinausgeht und ein breites Spektrum an Bereichen abdeckt, darunter Mathematik, Naturwissenschaften, Ingenieurwesen, Finanzen, Linguistik und mehr. Wolfram Alpha kann komplexe mathematische Operationen verarbeiten, sein Anwendungsbereich geht jedoch weit über die reine Mathematik hinaus.
Das CAS von Wolfram Alpha kann anspruchsvolle Berechnungen durchführen, die symbolische Manipulation, Gleichungslösung, Analysis, lineare Algebra, Statistik und mehr umfassen. Es bietet umfassendes integriertes Wissen und Algorithmen, die es ihm ermöglichen, komplexe Probleme in verschiedenen Disziplinen zu lösen. Im Gegensatz zu Geogebra konzentriert sich Wolfram Alpha in erster Linie auf die Bereitstellung detaillierter Antworten und Erklärungen auf der Grundlage von Benutzeranfragen und nicht auf interaktive Erkundungen oder dynamische Visualisierungen.
Zusammenfassend lässt sich sagen, dass sowohl Geogebra als auch Wolfram Alpha CAS-Funktionen bieten, Geogebra sein CAS jedoch in eine umfassendere interaktive Mathematiksoftware integriert und dabei den Schwerpunkt auf visuelles Erkunden und Lernen legt. Im Gegensatz dazu ist Wolfram Alpha eine umfassende rechnerische Wissensmaschine, die neben ihren vielen Funktionen auch ein robustes CAS umfasst und als Werkzeug zum Erhalten detaillierter Antworten und Erklärungen in zahlreichen Bereichen dient.
Mathematik Lernen mit Hilfe von Suchmaschinen (Google, Wolfram Alpha) und künstlicher Intelligenz (ChatGPT)
Keyword basierte Suchmaschinen mit organischen Treffern
Keyword basierte Suchmaschinen wie Google, Bing, Yahoo oder Ecosia durchforsten mit Hilfe eines Web-Crawlers zyklisch die ihnen zugänglichen Teile vom Internet und erstellen einen Index, der für jedes Schlüsselwort die relevanten Webseiten auflistet. Da Google 2022 einen Anteil von 95% der Suchanfragen im deutschen Sprachraum hatte, werden wir uns im Folgenden auf die Google Terminoligie beschränken.
Sucht ein Nutzer der Suchmaschine nach einem bestimmten Schlüsselwort – z.B.: „Binomialkoeffizient“, werden auf der SERP (Search Engine Result Page) nach einem (geheimen) Ranking-Algorithmus aus dem Index die blauen Links auf die relevanten Webseiten ausgegeben. Man spricht dabei von organischen Suchtreffern. Klickt der Suchende den Link an, landet er auf der entsprechenden Website eines Inhalteanbieters irgendwo auf der Welt. Da mehr als ein Treffer angeboten wird, bleibt die Meinungsvielfalt gewahrt.
2012 haben die keyword-basierten Suchmaschinen bezüglich der Strukturierung von Daten aufgerüstet. Oberhalb der organischen Treffer, gibt Google auf der SERP, abgesehen von bezahlter Werbung, mehrere Boxen aus, deren Inhalt von Google generiert wird. D.h. Google verlinkt nicht mehr auf externe Inhalte, sondern generiert die Inhalte selbst. Die Quellen werden möglichst unauffällig angegeben und es ist nicht die Absicht von Google dass Nutzer zum eigentlichen Inhalteanbieter weitersurft. Der Nutzer bleibt im Ökosystem von Google und es fällt kaum mehr Traffic für externe Webseiten an, die Meinungsvielfalt bleibt auf der Strecke.
- Direkt Answer, beantwortet einfache Suchanfragen, die über ein gigantischem Suchvolumen verfügen direkt, z.B.: "km Meilen". Der Nutzer bleibt im Google Ökosystem.
- Knowledge Panel bzw. Informationen aus dem Knowledge Graph, damit werden die auf verschiedenen Webseiten gefunden Informationen automatisch von Google zusammengefasst. Die Nutzer erhalten einen schnellen Überblick über allgemeine Themen, ohne auf externe Webseiten zu surfen. Hier werden ab 2023 wohl KI generierte Texte den Nutzer noch stärker zum Verweilen im Google Ökosystem verleiten.
- Featured Snippets, damit werden Auszüge aus einer durch Favicon und URL grundsätzlich identifizierbaren externen Webseite in Form einer Antwort auf die sehr konkrete Suchanfrage zusammengefasst. Trafficstarke Featured Snippets bringen viel organischen Traffic auf die Website des Inhalte-Erstellers. Hier werden ab 2023 wohl KI generierte Texte den Nutzer noch stärker zum Verweilen im Google Ökosystem verleiten.
- People Also Ask - Boxen, damit werden ähnliche Fragen beantwortet, die für den Nutzer ohne dessen Zutun die Suchanfrage verfeinern oder leicht abwandeln.
D.h. der Nutzer erhält eine erste oberflächliche und natürlichsprachige Antwort auf seine Suchabfrage bereits direkt durch Google, und zwar ganz oben auf der Trefferseite, noch vor den organischen Treffern. Der Nutzer "erspart" es sich dadurch auf die der Antwort zugrunde liegende Website zu surfen, was den Webseiten, welche die Inhalte aufwendig erstellt haben, um die Besucher und die damit verbundenen Vermarktungsmöglichkeiten bringt. An dieser Stelle sei vor einem Informationsmonopol durch Google, Bing, Yandex und Baidu gewernt!
Der Betrieb eines Indexers ist extrem teuer, daher gibt es weltweit nur 4 große Suchindizes (Google und Bing aus den USA; Yandex aus Russland bzw. den Niederlanden und Baidu aus China) die auf Grund ihrer Dominanz das Potential haben, die gesellschaftliche Willensbildung zu beeinflussen. Daher fördert die EU derzeit den Aufbau von einem europäischen Suchindex.
Das Training einer KI und deren Betrieb in einem Rechenzentrum sind ebenfalls extrem teuer, sodass es auch hier vor einem Informationsmonopol gewarnt werden muss.
Wissensbasierte semantische Suchmaschinen
Wissensbasierte semantische Suchmaschinen wie Wolfram Alpha suchen nicht nach einzelnen Schlüsselwörtern, sondern nach deren Bedeutung („Notable people born in Vienna“ wird zerlegt in „City=Vienna“ & „notable people born in city“) und nützten dabei durch „Data Curators“ händisch ausgewählte vertrauenswürdige Datenquellen, etwa von Statistischen Zentralämtern. Es kommt kein Indexer zum Einsatz.
Als Ausgabe erhält der Nutzer keine Links auf die Datenquellen wie bei Google, aber auch keinen Text in natürlicher Sprache wie bei ChatGPT, sondern ein Set an strukturierten Daten.
Bei der Suchfunktionalität von Wolfram Alpha handelt es sich um ein wissensbasiertes System, welches formalisierte Regeln und Logiken verwendet, um Fragen faktenbasiert zu beantworten. Der Nachteil dieses Ansatzes ist, dass die Suchmaschine komplex formulierte sprachliche Anfragen nicht verarbeiten kann und nur auf Fragen aus ausgewählten Wissenschaften eine Antwort liefern kann.
KI basierte Sprachmodelle
KI-basierte Sprachmodelle wie ChatGPT von OpenAI oder Bard von Google wurden vorab mit gigantischen Textmengen trainiert. Sie nützen neuronale Netze, um Beziehungen zwischen einzelnen Worten und Texten zu erfassen und darauf aufbauend, basierend auf Wahrscheinlichkeiten und Modellen von Wortabfolgen, neue Texte zu erzeugen und diese dann in natürlicher Sprache auszugeben.
Während ChatGPT einen Text schreibt, evaluiert es auf der Basis eines komplexen Sprachmodells mit Milliarden an Parametern vor jedem neuen Wort, welche Wörter mit der größten Wahrscheinlichkeit auf den bisher geschriebenen Satzteil folgen sollten, um letztlich eine sinnvolle Abfolge von Sätzen zu ergeben.
Für mathematische Anwendungen bedeutet dies, dass ChatGPT die Summe aus 2+3 nicht eigenständig errechnen kann, sondern darauf angewiesen ist, das Resultat in den Trainingsdaten zu finden. Ist das nicht der Fall, fängt ChatGPT an zu raten!
Andererseits kann ChatGPT mathematisches Grundlagenwissen, welches in den Trainingsdaten umfangreich enthalten ist, sehr gut an die konkrete Fragenstellung des Nutzers in dessen natürlicher Sprache angepasst wiedergeben. Z.B.: „Wobei nützt mir der Binomialkoeffizient?“
Durch die Sprachmodelle werden Features Snippets, Knowledge Panel und People Also Ask – Boxen obsolet.
Obwohl die Sprachmodelle mit Hilfe von Büchern sowie wissenschaftlichen Arbeiten trainiert wurden und auch auf den Indexer von schlüsselwortbasierten Suchmaschinen (Google, Bing,..) zugreifen können, bleibt dem Nutzer die Herkunft der Daten verborgen.
In den Trainingstexten liegen also zugleich die Stärken und Schwächen der KI-basierten ChatBots. Sind die dort enthaltenen Daten falsch oder trendig (z.b. vorurteilsbehaftet) so schlägt dies auf die Antworten durch.
Hybrid aus wissens- und sprachbasierter Suchmaschinen
2023 verkündet Wolfram Research ein Plug-In, welches Wolfram Alpha mit ChatGPT verbindet, damit ChatGPT auf leistungsstarke Berechnungen und kuratiertes Wissen von Wolfram Alpha zugreifen kann.
Schon den nächsten Urlaub geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...
