Bewegungsaufgaben
Hier findest du folgende Inhalte
Formeln
Maßzahl, Größe und Einheit
Physikalische Größen sind das Produkt aus einer Maßzahl mit einer Einheit.
Größe = Maßzahl x Einheit
Maßzahl
Die Maßzahl gibt den Betrag (Menge, Stückzahl,...) als eine konkrete Zahl aus der Menge der reellen Zahlen an.
Basisgröße
Die Größe(nart) legt fest, um welche physikalische Größe es sich handelt. Es gibt sieben voneinander unabhängige Basisgrößen.
Abgeleitete Größe
Aus den sieben von einander unabhängigen Basisgrößen setzen sich alle anderen physikalischen Größen zusammen.
Basiseinheit
Jeder der sieben Basisgrößen ist eine Basiseinheit und ein Einheitenzeichen zugeordnet. Manche Basiseinheiten sind von anderen Basiseinheiten abhängig. So geht etwa in die Definition von der Basiseinheit "Meter" die Basiseinheit "Sekunde" ein. Die Einheit umfasst auch die Zehnerpotenz der Maßzahl. Zum Beispiel für 103 steht Kilo, für 106 steht Mega oder für 10-9 steht nano vor der eigentlichen Einheit.
Einheit
Einheiten dienen dazu Größen zu messen. Für abgeleitete Größen verwendet man Einheiten, die sich aus Basiseinheiten zusammen setzen.
Beispiel:
Zwei Holzstücke mit 7cm bzw. 7m Länge. Diese beiden physikalischen Größen setzen sich zusammen aus
- einer Maßzahl, die den Betrag angibt (in beiden Fällen "7")
- einer Größe(nart), die festlegt um welche Qualität es sich handelt (in beiden Fällen "Länge")
- einer Einheit, die festlegt wie der Betrag abzuzählen ist (im Beispiel "cm" bzw. "m")
Beispiel:
Vergleiche 7m, 7cm
Wir bringen auf die gleiche Einheit "m"
7cm = 0,07m
Nun können wir die Werte an Hand ihrer Zahlenwerte wie folgt vergleichen
7m > 0,07m=7cm
Ein Holzstück von 7m Länge ist länger als ein Holzstück mit einer Länge von 7cm.
7 SI Basisgrößen und ihre Basiseinheiten
Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik. SI steht für „Système international d’unités“, das ist das am weitesten verbreitete internationale Einheitensystem.
Basisgröße, Formelzeichen | Basiseinheit | Einheitszeichen |
Länge l | Meter | m |
Masse m | Kilogramm | kg |
Zeit t | Sekunde | s |
elektrische Stromstärke I | Ampere | A |
Temperatur T | Kelvin | K |
Stoffmenge n | Mol | mol |
Lichtstärke Iv | Candela | cd |
SI abgeleitete Größen und ihre Einheiten
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten sind
Abgeleitete physikalische Größe, Formelzeichen | Einheit | Einheitszeichen |
Fläche A | Quadratmeter | m² |
Volumen V | Kubikmeter | m³ |
Geschwindigkeit v | Kilometer pro Stunde | m/s |
Beschleunigung a | Meter pro Sekundenquadrat | m/s² |
mechanische Kraft F | Newton | N |
Frequenz f | Herz | Hz |
Arbeit W, Energie E, Wärmemenge Q | Joule | J |
mechanische Leistung P | Watt | W |
Druck p | Pascal | Pa |
Lichtstrom Φ | Lumen | lm |
Beleuchtungsstärke E | Lux | lx |
SI abgeleitete Größen und ihre Einheiten aus der Elektrotechnik
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten aus dem Gebiet der Elektrotechnik sind
Abgeleitete elektrotechnische Größe, Formelzeichen | Einheit | Einheitszeichen |
magnetische Feldstärke \({\overrightarrow H }\) | Ampere pro m | A/m |
elektrische Feldstärke \({\overrightarrow E }\) | Volt pro m | V/m |
Spannung U | Volt | V |
Arbeit W, Energie E | Joule | J |
elektrische Ladung Q | Coulomb | C |
elektrische Leistung P | Watt | W |
ohmscher Widerstand R | Ohm | \(\Omega\) |
elektrische Kapazität C | Farad | F |
magnetische Induktivität L | Henry | H |
magnetischer Fluss \(\Phi\) | Weber | Wb |
magnetische Flussdichte \({\overrightarrow B }\) | Tesla | T |
Physikalische Größen - Auswahl und Definition gemäß Formelsammlung AHS
Größe | Formel | Formel | Formel |
Dichte ρ | \(\rho = \dfrac{m}{v}\) | ||
Leistung P | \(P = \dfrac{{\Delta E}}{{\Delta t}}\) | \(P = \dfrac{{\Delta W}}{{\Delta t}}\) | \(P = \dfrac{{dW\left( t \right)}}{{dt}}\) |
Kraft F | \(F = m \cdot a\) | \(F = \dfrac{{dW}}{{ds}}\) | |
Arbeit | \(W = F \cdot s\) | \(W = \int {F\left( s \right)\,\,\operatorname{ds} }\) | |
kinetische Energie Ekin | \({E_{kin}} = \dfrac{{m \cdot {v^2}}}{2}\) | ||
potentielle Energie Epot | \({E_{pot}} = m \cdot g \cdot h\) | ||
gleichförmige geradlinige Bewegung v(t) | \(v = \dfrac{s}{t}\) | \(v = \dfrac{{ds}}{{dt}}\) | \(v\left( t \right) = s'\left( t \right) = \dfrac{{ds}}{{dt}}\) |
gleichmäßig beschleunigte geradlinige Bewegung a(t) | \(v = a \cdot t + {v_0}\) | \(a = \dfrac{{dv}}{{dt}}\) | \(a\left( t \right) = v'\left( t \right) = \dfrac{{dv}}{{dt}} = s''\left( t \right) = \dfrac{{{d^2}s}}{{d{t^2}}}\) |
Bewegungsvorgänge - Auswahl und Definition gemäß Formelsammlung BHS
Größe | Formel |
Zeit t | \(t\) |
Weg-Zeit-Funktion s(t) | \(s\left( t \right) = \int {v\left( t \right)} \,\,dt\) |
Geschwindigkeit-Zeit-Funktion v(t) | \(v(t) = s'\left( t \right) = \mathop s\limits^ \bullet = \dfrac{{ds}}{{dt}} = \int {a\left( t \right)} \,\,dt\) |
Beschleunigung-Zeit-Funktion a(t) | \(a\left( t \right) = s''\left( t \right) = \mathop s\limits^{ \bullet \bullet } = \dfrac{{{d^2}s}}{{d{t^2}}} = v'\left( t \right) = \mathop v\limits^ \bullet = \dfrac{{dv}}{{dt}}\) |
Anmerkung zur auf Universitäten üblichen Kurzschreibweise von "Ableitungen nach der Zeit": Die Notation mit einem "Punkt" über dem Formelzeichen bedeutet, dass es sich um die 1 Ableitung nach der Zeit handelt. Zwei "Punkte" bedeuten, dass es sich um die 2. Ableitung nach der Zeit handelt.
Größen und ihre Einheiten - Auswahl gemäß Formelsammlung AHS
Größe | Einheit | Symbol | Beziehung zu SI-Einheiten |
Temperatur T | Grad Celsius Grad Kelvin |
°C K |
\(\Delta t = \Delta T\) |
Frequenz f | Hertz | Hz | \(1 \cdot Hz = 1 \cdot {s^{ - 1}}\) |
Arbeit W, Energie E, Wärmemenge Q | Joule | J | \(1 \cdot J = 1 \cdot kg \cdot {m^{2}}\cdot s^{ - 2}\) |
Kraft F | Newton | N | \(1 \cdot N = 1 \cdot kg \cdot m \cdot {s^{ - 2}}\) |
Drehmoment M | Newtonmeter | \(N \cdot m\) | \(1 \cdot N \cdot m = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 2}}\) |
Elektrischer Widerstand R | Ohm | \(\Omega\) | \(1 \cdot \Omega = 1 \cdot V \cdot {A^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 2}} \cdot {s^{ - 3}}\) |
Druck p | Pascal | Pa | \(1 \cdot Pa = 1 \cdot N \cdot {m^{ - 2}} = 1 \cdot kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}\) |
Elektrische Stromstärke I | Ampere | A | \(1 \cdot A = 1 \cdot C \cdot {s^{ - 1}}\) |
Elektrische Spannung U | Volt | V | \(1 \cdot V = 1 \cdot J \cdot {C^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 1}} \cdot {s^{ - 3}}\) |
Leistung P | Watt | W | \(1 \cdot W = 1 \cdot J \cdot {s^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 3}}\) |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgaben
Aufgabe 4025
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil a
Der Verlauf eines Lichtstrahls durch ein Glasprisma wird als Strahlengang bezeichnet. In einem Spezialglas beträgt die Lichtgeschwindigkeit 205 337 300 m/s. In einem aus diesem Glas gefertigten Prisma beträgt die Länge des Strahlengangs 5 cm.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele Sekunden es dauert, bis ein Lichtstrahl dieses Prisma durchquert hat.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4205
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil c
Der nachstehend dargestellte Graph zeigt annähernd den Geschwindigkeitsverlauf eines im Stadtgebiet fahrenden Autos.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie näherungsweise die Länge des im Zeitintervall [0; 45] zurückgelegten Weges.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie die Höchstgeschwindigkeit des Autos ab. Geben Sie das Ergebnis in km/h an.
[1 Punkt]
Aufgabe 4039
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinkende Kugeln - Aufgabe B_407
Teil c
Die Sinkgeschwindigkeit einer bestimmten Kugel kann durch die Funktion v beschrieben werden:
\(v\left( t \right) = g \cdot 0,25 \cdot \left( {1 - {e^{\left( { - \dfrac{t}{{0,25}}} \right)}}} \right){\text{ mit }}t \geqslant 0\)
wobei:
t | Zeit ab Beginn des Sinkens in s |
v(t) | Sinkgeschwindigkeit zur Zeit t in m/s |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie denjenigen Weg, den die Kugel in der ersten Sekunde zurücklegt.
[1 Punkt]
Im Zeitintervall [0; t1] legt die Kugel einen Weg von 8 m zurück.
2. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie die Zeit t1.
[1 Punkt]
Aufgabe 4042
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kräfte - Aufgabe B_406
Teil c
Der Geschwindigkeitsverlauf einer durch eine bestimmte Kraft hervorgerufenen Bewegung ist durch die Funktion v gegeben: \(v\left( t \right) = 2 \cdot t - \dfrac{{{t^2}}}{2}\) mit
t | Zeit in Sekunden (s) |
v(t) | Geschwindigkeit zur Zeit t in Metern pro Sekunde (m/s) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum im Zeitintervall 0 ≤ t ≤ 4 gilt: v(t) ≥ 0
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie im nachstehenden Koordinatensystem das zugehörige Beschleunigung-Zeit-Diagramm für 0 ≤ t ≤ 4.
[1 Punkt]
Aufgabe 4066
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fallschirmsprung - Aufgabe A_261
Teil a
In den ersten Sekunden nach dem Absprung gilt für den Fallschirmspringer annähernd das Fallgesetz:
\(s\left( t \right) = \dfrac{g}{2} \cdot {t^2}\)
t | Zeit nach dem Absprung in s |
s(t) | Fallstrecke zur Zeit t in m |
g | Erdbeschleunigung, g = 9,81 m/s2 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie mithilfe des Fallgesetzes die Geschwindigkeit des Fallschirmspringers 1,5 Sekunden nach dem Absprung.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4067
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fallschirmsprung - Aufgabe A_261
Teil b
Bei einem Fallschirmsprung wurde der zeitliche Verlauf der Geschwindigkeit eines Fallschirmspringers aufgezeichnet. Im nachstehenden Diagramm wird diese Geschwindigkeit für die ersten 80 Sekunden nach dem Absprung veranschaulicht.
55 Sekunden nach dem Absprung zieht der Fallschirmspringer die Reisleine, der Fallschirm öffnet sich.
1. Teilaufgabe - Bearbeitungszeit 5:40
Schätzen Sie den Flächeninhalt zwischen der Geschwindigkeitskurve und der Zeitachse im Intervall [0 s; 55 s] ab.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung dieses Flächeninhalts im gegebenen Sachzusammenhang unter Angabe der entsprechenden Einheit.
[1 Punkt]
Aufgabe 4096
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wings for Life World Run - Aufgabe B_022
Teil a
Beim Wings for Life World Run starten alle Läufer/innen gleichzeitig. Eine halbe Stunde später verlässt ein Verfolgerauto („Catcher-Car“) den Start und fährt den Läuferinnen und Läufern nach. Die Teilnehmer/innen laufen jeweils so lange, bis sie vom Catcher-Car eingeholt werden. Der vom Catcher-Car innerhalb der ersten 2,5 Stunden ab dem Start der Läufer/innen zurückgelegte Weg kann näherungsweise durch die folgende stückweise definierte Funktion s beschrieben werden:
\(s\left( t \right)\left\{ {\begin{array}{*{20}{c}} 0&{{\rm{für}}}&{t \le 0,5}\\ {}&{{\rm{für}}}&{0,5 < t \le 1,5}\\ {16 \cdot t - 9}&{{\rm{für}}}&{1,5 < t \le 2,5} \end{array}} \right.\)
mit
t | Zeit ab dem Start der Läufer/innen in h |
s(t) | der vom Catcher-Car zur Zeit t zurückgelegte Weg in km |
Im Zeitintervall ]0,5; 1,5] fährt das Catcher-Car mit konstanter Geschwindigkeit.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Weg-Zeit-Funktion für das Zeitintervall ]0,5; 1,5] in der gegebenen Funktionsdefinition.
[1 Punkt]
1. Teilaufgabe - Bearbeitungszeit 5:40
Die Geschwindigkeit eines bestimmten Läufers kann näherungsweise durch folgende Funktion v beschrieben werden:
\(v\left( t \right) = - 0,73 \cdot {t^2} + 2,43 \cdot t + 10\)
v(t) | Geschwindigkeit des Läufers zur Zeit t in km/h |
Berechnen Sie denjenigen Zeitpunkt, zu dem dieser Läufer vom Catcher-Car eingeholt wird.
[1 Punkt]
Aufgabe 4177
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Pauliberg - Aufgabe A_067
Der Pauliberg ist Österreichs jüngster erloschener Vulkan und ein beliebtes Ausflugsziel im Burgenland.
Teil b
Beim Pauliberg gibt es einen beliebten Wanderweg. Sarah benötigt für die a Kilometer lange Wanderung b Stunden. Leonie wandert auf der gleichen Strecke, startet aber 1,5 Stunden später. Sarah und Leonie erreichen gleichzeitig das Ziel.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie aus a und b eine Formel zur Berechnung der mittleren Geschwindigkeit v von Leonie in km/h.
v =
[1 Punkt]
Aufgabe 4243
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143
Teil a
Die Bremswege eines PKW auf schneebedeckter sowie auf trockener Fahrbahn werden miteinander verglichen. Das nachstehende Geschwindigkeit-Zeit-Diagramm zeigt modellhaft den zeitlichen Verlauf der Geschwindigkeit vS auf schneebedeckter Fahrbahn sowie den zeitlichen Verlauf der Geschwindigkeit vT auf trockener Fahrbahn vom Reagieren der Bremse bis zum Stillstand des PKW.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe des obigen Diagramms die (negative) Beschleunigung auf schneebedeckter Fahrbahn.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Der Bremsweg ist diejenige Strecke, die der PKW vom Reagieren der Bremse (t = 0) bis zum Stillstand zurücklegt. Veranschaulichen Sie im obigen Diagramm den Bremsweg auf trockener Fahrbahn.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe des obigen Diagramms die Differenz zwischen dem Bremsweg auf schneebedeckter Fahrbahn und dem Bremsweg auf trockener Fahrbahn.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4244
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143
Teil b
Auf einer geraden Teststrecke werden mit zwei PKWs Bremsversuche durchgeführt. Die beiden PKWs fahren dabei in die gleiche Richtung. Während der ersten 5 s des Bremsvorgangs werden die Abstande der beiden PKWs zu einer Markierungslinie gemessen. Diese Abstande können näherungsweise durch die nachstehenden Funktionen beschrieben werden:
\(\begin{array}{l} {s_A}\left( t \right) = - 2 \cdot {t^2} + 20 \cdot t + 12\\ {s_B}\left( t \right) = - 2 \cdot {t^2} + 24 \cdot t \end{array}\)
mit:
- sA(t) ... Abstand des PKW A zur Markierungslinie zur Zeit t in m
- sB(t) ... Abstand des PKW B zur Markierungslinie zur Zeit t in m
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Abstand des PKW A zur Markierungslinie zur Zeit t = 2.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass PKW A zur Zeit t = 3 langsamer als PKW B fährt.
[1 Punkt]
Aufgabe 4257
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Torre de Collserola - Aufgabe A_296
Teil a
Vom Fußpunkt des Torre de Collserola (Fernsehturm in Barcelona) bis zu dessen Aussichtsplattform führt ein Aufzug senkrecht nach oben. In der nachstehenden Abbildung ist die Geschwindigkeit-Zeit-Funktion v bei einer Aufzugsfahrt modellhaft dargestellt.
- t ... Zeit in s
- v(t) ... Geschwindigkeit zur Zeit t in m/s
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die maximale Geschwindigkeit bei dieser Aufzugsfahrt in km/h.
[1 Punkt]
Aufgabe 4258
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Torre de Collserola - Aufgabe A_296
Teil b
Vom Fußpunkt des Torre de Collserola (Fernsehturm in Barcelona) bis zu dessen Aussichtsplattform führt ein Aufzug senkrecht nach oben. In der nachstehenden Abbildung ist die Geschwindigkeit-Zeit-Funktion v bei einer Aufzugsfahrt modellhaft dargestellt.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der obigen Abbildung die Steigung k der Geschwindigkeit-Zeit- Funktion v im Zeitintervall [105; 150].
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Steigung k und ihr Vorzeichen im gegebenen Sachzusammenhang. Geben Sie dabei die zugehörige Einheit an.
[1 Punkt]