Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Elektrotechnik und Physik
  3. Grundlagen der Physik
  4. Thermodynamik

Thermodynamik

Hier findest du folgende Inhalte

2
Formeln
    Formeln
    Wissenspfad

    Temperatur T

    Die Temperatur T ist eine skalare Zustandsgröße einen Körpers, gemessen in °C oder K, und ist unabhängig von dessen Größe oder Masse. Die Temperatur ist ein Maß für die mittlere kinetische Energie der Moleküle eines Körpers, man kann auch sagen, sie ist ein Maß für die Stärke der atomaren Unruhe. Die Menge der atomaren Unruhe bezeichnet man hingegen als Entropie.

    \({E_{kin}} = \dfrac{3}{2} \cdot kT = \dfrac{1}{2}m{v^2}\)

    p Druck in bar
    V Volumen des Gases in m³
    N Teilchenzahl
    k Bolzmann-Konstante k=1,381.10-23 J/K
    R universelle Gaskonstante \(R = 8,314\,\,\dfrac{J}{{mol \cdot K}}\)
    T Absolute Temperatur in K
    Q Wärme bzw. Wärmemenge in Joule
    H Enthalpie oder Wärmeinhalt eines Systems in Joule
    S Entropie als Maß für die Unordnung in J/K
    U innere Energie eines Systems (Reaktionswärme) in Joule
    n Stoffmenge in mol
    c Substanzabhängige, spezifische Wärmekapazität in \(\dfrac{J}{{kg \cdot K}}\)
    m Masse der Substanz in kg
    TE Endtemperatur in K
    TA Anfangstemperatur in K

    Wärme Q

    Wärme ist eine Prozessgröße und bezeichnet die Energie die zwischen 2 Systemen unterschiedlicher Temperatur bei Wärmekontakt ausgetauscht wird, bis die Mischtemperatur vorliegt, ohne dass Arbeit verrichtet wird. Die Einheit der Wärme ist das Joule.


    Wärmemenge Q

    Die Wärmemenge Q ist erforderlich, um eine Substanz mit der spezifischen Wärmekapazität c um eine bestimmte Temperaturdifferenz (TE-TA) zu erwärmen. Je größer die Temperaturdifferenz, umso mehr Wärmemenge muss man zuführen. Die materialabhängige Wärmekapazität ist ihrerseits temperaturabhängig. 

    \(Q = c \cdot m \cdot \left( {{T_E} - {T_A}} \right)\)

    Typische Wärmekapazitäten betragen:

    \(\eqalign{
    & {\text{Luft: }}710 \cdot \dfrac{J}{{kg \cdot K}} \cr
    & {\text{Wasser: }}4000 \cdot \dfrac{J}{{kg \cdot K}} \cr
    & {\text{Wasserstoff: 14}} \cdot \dfrac{J}{{kg \cdot K}} \cr
    & \cr} \)

    Der Wärmeenergieinhalt pro kg Luft bei 300K = 27°C errechnet sich zu: 710x300 = 213.000 J


    Innere Energie U

    Die innere Energie entspricht der Gesamtenergie eines abgeschlossenen Systems. Als solche ist sie konstant. Bei einem idealen Gas hängt die innere Energie nur von der Temperatur des Gases ab. Die Einheit der inneren Energie ist das Joule.

    \(\begin{array}{l} U = \dfrac{3}{2} \cdot N \cdot k \cdot T\\ \Delta U = 0 = \Delta Q + \Delta W \end{array}\)


    Enthalpie H

    Die Enthalpie H ist das Maß für den Wärmeinhalt eines Systems. Sie setzt sich zusammen aus der inneren Energie und der sogenannten Volumensarbeit. Das ist die Arbeit die gegen den Druck zu verrichten ist, um das Volumen zu verändern. Die Einheit der Enthalpie ist das Joule.

    \(H = U + p \cdot V\)


    Entropie S

    Die Entropie S ist eine fundamentale thermodynamische Zustandsgröße, deren Einheit Joule pro Kelvin ist. Sie hängt als mengenartige Eigenschaft eines Körpers von dessen Größe, Masse, Temperatur ab. Man kann sagen sie ist ein Maß für die Menge der atomaren Unruhe in einem Körper. Die Stärke der atomaren Unruhe kennen wir als Temperatur. Die in einem System gespeicherte Entropie ändert sich bei der Aufnahme oder Abgabe von Wärme Q.

    \(\Delta S = \dfrac{{\Delta Q}}{T} = k.\ln W\)

    W ist die thermodynamische Wahrscheinlichkeit.

    D.h. man kann Entropie aus einem System heraus und in ein anderes System hineinleiten. Dann wird der erste Gegenstand kälter und der zweite Gegenstand wärmer. Ohne Entropie gibt es weder Temperatur noch Wärme.

    Entropie verteilt sich in einem gleichförmigen Körper von selbst gleichmäßig. Entropie kann durch Energiezufuhr leicht erzeugt werden, sie kann aber nur abgeleitet werden, niemals aber abnehmen. Der Vorgang von Entropie-Erzeugung ist irreversibel. Entropie ist ein Maß für die Menge an atomarer Unordnung hinsichtlich Lage und Bewegung in einem Körper.


    Bolzmann-Konstante k

    Die Bolzmann Konstante k erlaubt die Berechnung der mittleren thermischen Energie eines Teilchens aus dessen Temperatur. Die Einheit der Bolzmann-Konstante ist Energie gebrochen durch Temperatur.
    k=1,381.10-23 J/K.


    Ideales Gasgesetz

    Die Bolzmann-Konstante kommt auch im idealen Gasgesetz vor. Das ideale Gasgesetz beschreibt den Zusammenhang zwischen Druck und Volumen auf der einen Seite sowie der Temperatur und der Stoffmenge auf der anderen Seite.

    \(p \cdot V = N \cdot k \cdot T = n \cdot R \cdot T\) 


    Boyle-Mariotte'sches Gasgesetz

    Das Gasgesetz von Boyle und Mariotte besagt, dass Druck und Volumen eines idealen Gases indirekt proportional zu einander sind, wenn die Temperatur und die Teilchenanzahl des Gases unverändert bleibt. So geht die Halbierung des Volumen mit einer Verdoppelung vom Druck einher.

    \({\rm{p}} \cdot {\rm{V = const}}\)


    Absoluter Nullpunkt der Temperatur

    Der „absolute Nullpunkt der Temperatur“ liegt bei 0K = -273,12°C. Kälter geht es nicht, denn dann haben alle Teilchen Null als kinetische Energie bzw. ist der Druck eines idealen Gases ebenfalls Null.

    Nach oben hat die Temperatur anscheinend keine Grenze. An der Sonnenoberfläche beträgt sie 8.000 K im Sonneninneren 15 Millionen K und am höchsten war die Temperatur am Zeitpunkt der kleinsten physikalisch sinnvollen Zeitangabe nach dem Urknall, zur sogenannten Planck-Zeit mit 10-43 Sekunden, wobei damals die Planck-Temperatur von 1032 K herrschte.

    0°C = Schmelzpunkt des Wassers;
    100°C = Siedepunkt des Wassers;


    Thermometer

    Thermometer messen physikalische Größen (Länge von Metall) die sich mit der Temperatur ändern.

    Temperatur T
    Bolzmann Konstante
    Ideales Gasgesetz
    Gasgesetz von Boyle und Mariotte
    Entropie
    Wärme Q
    Wärmemenge Q
    Enthalpie
    Fragen oder Feedback

    Schon den nächsten Badeurlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Damit niemand mehr bei Mathe in's Schwimmen kommt!

    Startseite
    Bild
    Illustration Schwimmerin 1050x450
    Startseite
    Wissenspfad

    Thermodynamik

    Die früher Wärmelehre genannte Thermodynamik beschäftigt sich mit Prozessen der Energieumwandlung sowie mit Zustandsänderungen von Körpern wenn Wärme zu- oder abgeführt wird. Ihre Basis sind die 4 Hauptsätze der Thermodynamik. Da der grundlegendste Hauptsatz nach den ersten drei Hauptsätzen entdeckt wurde, trägt er die Nummer Null.


    0. Hauptsatz der Thermodynamik

    Zwei Systeme die sich in thermodynamischen Gleichgewicht mit einem dritten System befinden, sind auch untereinander in thermodynamischen Gleichgewicht. Zwei mit einander in Kontakt stehender Systeme haben nach allfälligen Ausgleichsvorgängen die gleiche Temperatur.


    1. Hauptsatz der Thermodynamik

    Die Änderung der inneren Energie eines geschlossenen Systems ist gleich der Summe aus der Änderung der Wärme und der Änderung der Arbeit. Die innere Energie eines geschlossenen Systems ist konstant. \(\Delta U = \Delta Q + \Delta W\). In einem geschlossenen System kann der Gesamtbetrag der Energie weder vergrößert noch verkleinert werden. Es können lediglich die verschiedenen Energiearten ineinander umgewandelt werden. Ein Perpetuum Mobile 1 Art, also eine Vorrichtung die ohne äußerer Energiezufuhr in ständiger Bewegung bleibt, ist unmöglich.

    Der 1. thermodynamische Hauptsatz (Energieerhaltungssatz) besagt, dass in einem abgeschlossenem physikalischen System Energie weder erzeugt noch vernichtet, sonder nur in eine andere Energieform umgewandelt werde kann. Die Differenz von zugeführter und nutzbarer Leistung ergibt die Verlustleistung, die meist über Reibung in Wärmeleistung umgewandelt und abgegeben wird.

    \({P_{{\text{Verlust}}}} = {P_{{\text{zugef}}{\text{.}}}} - {P_{{\text{Nutz}}}}\)

    Die Änderung der inneren Energie eines abgeschlossenen Systems ist gleich der Summe der Änderung der enthaltenen Wärme und der Änderung der Arbeit:

    \(\Delta U = \Delta Q + \Delta W\)


    2. Hauptsatz der Thermodynamik

    Wärmeenergie kann von selbst nur von Materie mit hoher Temperatur auf Materie mit niedriger Temperatur übertragen werden. Im thermodynamischen Gleichgewicht hat ein System eine möglichst große Entropie (Sie ist eine Größe, mit deren Hilfe man die Irreversibilität eines Vorganges kennzeichnen kann). Die Entropie \(S = S\left( {p,V,T} \right)\) eines abgeschlossenen Systems wird nie von alleine kleiner. Ein Perpetuum Mobile 2. Art, welches die vollständige Umwandlung von Wärmeenergie in mechanische Energie erlaubt, ist unmöglich


    3. Hauptsatz der Thermodynamik

    Der 3. Hauptsatz besagt, dass es keinen Prozess gibt, mit dem es möglich ist, selbst mit unendlich vielen Schritten, den absoluten Nullpunkt zu erreichen. \(\mathop {\lim }\limits_{T \to 0} \Delta S = 0\). Bei der Annäherung an den absoluten Nullpunkt konvergiert die Entropie gegen Null.

    Thermodynamik
    Hauptsätze der Thermodynamik
    Perpetuum Mobile 1. Art
    Perpetuum Mobile 2. Art
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Tablet
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH