Hochpunkt einer Funktion
Am Hochpunkt einer Funktion ist die 1. Ableitung der Funktion 0 und die 2. Ableitung kleiner als 0
Hier findest du folgende Inhalte
Formeln
Grafisches Differenzieren
Beim grafischen Differenzieren leitet man Aussagen über den Verlauf einer Funktion aus dem Verlauf ihrer 1. und 2. Ableitung ab, bzw. umgekehrt
f hat Extremstelle (HP oder TP) | f' hat NST | |
f hat Wendepunkt | f' hat Extremstelle (HP oder TP) | f'' hat NST |
f hat Sattelpunkt | f' hat HP oder TP auf x-Achse | f'' hat NST |
f steigt streng monoton | f' liegt oberhalb der x-Achse bzw. f' > 0 | |
f sinkt streng monoton | f' liegt unterhalb der x-Achse bzw. f' < 0 | |
f ist linksgekrümmt, positiv gekrümmt bzw. konvex | f' ist steigend | f'' > 0 |
f ist rechtsgekrümmt, negativ gekrümmt bzw. konkav | f' ist fallend | f'' < 0 |
Merkhilfe: NEW-Regel
N = Nullstelle; E=Extremstelle (HP, TP); W=Wendestelle
F(x) | f(x) | N | E | W | ||
f(x) | f'(x) | N | E | W | ||
f'(x) | f''(x) | N | E | W |
Zusammenhänge zwischen der Funktion, ihrer ersten und ihrer zweiten Ableitung beim grafisches Differenzieren
Funktion f(x) | Ableitung f‘(x) | Ableitung f"(x) |
f hat eineExtremstelle |
f‘ hat eine Nullstelle | keine Aussage möglich |
f hat einen Wendepunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Extremwert: Hochpunkt | f" hat eine Nullstelle |
f hat einen Wendepunktund die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Extremwert: Tiefpunkt | f" hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Hochpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist | f‘‘ hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Tiefpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist |
f‘‘ hat eine Nullstelle |
f steigt streng monoton an d.h. k>0 | f‘ liegt oberhalb der x-Achse | |
f sinkt streng monoton d.h. k<0 | f‘ liegt unterhalb der x-Achse | |
f ist symmetrisch zur y-Achse d.h. f ist eine gerade Funktion |
f‘ ist punktsymmetrisch zum Ursprung d.h. f‘ ist eine ungerade Funktion | f‘‘ ist symmetrisch zur y-Achse, d.h. f‘‘ ist eine gerade Funktion |
f ist punktsymmetrisch zum Ursprung d.h. f ist eine ungerade Funktion | f‘ ist symmetrisch zur y-Achse d.h. f‘ ist eine gerade Funktion | f‘‘ ist punktsymmetrisch zum Ursprung d.h. f‘‘ ist eine ungerade Funktion |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung | |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung |
Zusammenhang zwischen höheren Ableitungen
Je mehr Ableitungen man von einer Funktion kennt, um so genauere Aussagen kann man über den Verlauf vom Graph der Funktion machen
\(f\left( {{x_0}} \right) = 0\) | ⇒ | f(x) hat eine Nullstelle an der Stelle x0 |
\(f'\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist streng monoton wachsend |
\(f'\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist streng monoton fallend |
\(f'\left( {{x_0}} \right) = 0\) | ⇒ | f(x0) hat eine waagrechte Tangente an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) hat Tiefpunkt / lokales Minimum an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) hat Hochpunkt / lokales Maximum an der Stelle x0 |
\(f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist links / positiv / konkav gekrümmt |
\(f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist rechts / negativ / konvex gekrümmt |
\(f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Wendepunkt (Graph ändert sein Krümmungsverhalten) an der Stelle x0; Der WP ist jener Punkt, an dem f(x) die stärkste Steigung hat. |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Sattelpunkt (=Wendepunkt mit waagrechter Tangente) an der Stelle x0 |
Graph mit Hochpunkt
Graph mit Tiefpunkt
Graph mit Wendepunkt
Graph mit Sattelpunkt
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 6018
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion f mit
\(f\left( x \right) = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 3}}{\text{ mit }}{D_f} = {\Bbb R}\backslash \left\{ { - 3; - 1} \right\}\).
Der Graph von f wird mit Gf bezeichnet.
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Zeigen Sie, dass f (x) zu jedem der drei folgenden Terme äquivalent ist:
- Term 1: \(\dfrac{2}{{\left( {x + 1} \right) \cdot \left( {x + 3} \right)}}\)
- Term 2: \(\dfrac{2}{{{x^2} + 4x + 3}}\)
- Term 3: \(\dfrac{1}{{0,5 \cdot {{\left( {x + 2} \right)}^2} - 0,5}}\)
2. Teilaufgabe b.1) 1 BE - Bearbeitungszeit: 2:20
Begründen Sie, dass die x-Achse horizontale Asymptote von Gf ist.
3. Teilaufgabe b.2) 1 BE - Bearbeitungszeit:2:20
Geben Sie die Gleichungen der vertikalen Asymptoten von Gf an.
4. Teilaufgabe b.3) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie die Koordinaten des Schnittpunkts von Gf mit der y-Achse.
Die nachfolgende Abbildung 1 zeigt den Graphen der in \({\Bbb R}\) definierten Funktion
\(p:x \mapsto 0,5 \cdot {\left( {x + 2} \right)^2} - 0,5\), die die Nullstellen x=- 3 und x=-1 hat.
Für \(x \in {D_f}{\text{ gilt }}f\left( x \right) = \dfrac{1}{{p\left( x \right)}}\)
Gemäß der Quotientenregel gilt für die Ableitungen f‘ und p‘ die Beziehung
\(f'\left( x \right) = - \dfrac{{p'\left( x \right)}}{{{{\left( {p\left( x \right)} \right)}^2}}}{\text{ für x}} \in {{\text{D}}_f}\)
5. Teilaufgabe c.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass x=-2 einzige Nullstelle von f‘ ist.
6. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 3;2} \right[\) streng monoton steigend ist
7. Teilaufgabe c.3) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f‘(x) und p‘(x), dass Gf in \(\left] { - 2; - 1} \right[\) streng monoton fallend ist.
8. Teilaufgabe c.4) 2 BE - Bearbeitungszeit: 4:40
Geben Sie Lage des Extrempunkts von Gf an.
Geben Sie Art des Extrempunkts von Gf an.
9. Teilaufgabe d.1) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie f (-5) und f (-1,5)
10. Teilaufgabe d.2) 2 BE - Bearbeitungszeit: 4:40
Skizzieren Sie Gf unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 224
Kurvendiskussion
Führe für folgende Funktion eine Kurvendiskussion durch:
\(f\left( x \right) = \dfrac{{{x^3}}}{{{x^2} - 9}}\)
- 1. Teilaufgabe: Definitionsbereich, Stetigkeit und Differenzierbarkeit
- 2. Teilaufgabe: Polstellen
- 3. Teilaufgabe: Lücken
- 4. Teilaufgabe: Verhalten im Unendlichen
- 5. Teilaufgabe: Gleichung der Asymptoten
- 6. Teilaufgabe: Symmetrien
- 7. Teilaufgabe: Schnittpunkte mit den Koordinatenachsen
- 8. Teilaufgabe: Berechne die 1. Ableitung
- 9. Teilaufgabe: Berechne die 2. Ableitung
- 10. Teilaufgabe: Berechne die 3. Ableitung
- 11. Teilaufgabe: Berechne die Nullstellen
- 12. Teilaufgabe: Berechne die Extremstellen - untersuche auf Hoch- und Tiefpunkte
- 13. Teilaufgabe: Berechne die Extremstellen - untersuche auf Wende- und Sattelpunkte
- 14. Teilaufgabe: Bestimme die Wendetangente in der Hauptform und in der Punkt-Richtungsform
- 15. Teilaufgabe: Erstelle eine Wertetabelle
- 16. Teilaufgabe: Skizziere die Funktion
Aufgabe 4003
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fußballspielen im Park - Aufgabe A_250
Teil a
Roland und Julia spielen im Park Fußball. Roland legt den Ball auf die horizontale Wiese, nimmt Anlauf und schießt. Die Flugbahn des Balls kann näherungsweise durch den Graphen einer Polynomfunktion 3. Grades h beschrieben werden. Dabei wird der Ball als punktförmig angenommen.
\(h\left( x \right) = - 0,003 \cdot {x^3} + 0,057 \cdot {x^2}{\text{ mit }}x \geqslant 0\)
x | horizontale Entfernung des Balls von der Abschussstelle in Metern (m) |
h(x) | Höhe des Balls über dem Boden an der Stelle x in m |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den für diesen Sachzusammenhang größtmöglichen sinnvollen Definitionsbereich für die Funktion h. [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den höchsten Punkt der Flugbahn. [1 Punkt]
Aufgabe 4081
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flussläufe und Pegelstände - Aufgabe A_266
Teil a
Während eines Hochwassers wurde über den Zeitraum von einer Woche der Pegelstand eines Flusses ermittelt. Den Messergebnissen zufolge kann der zeitliche Verlauf des Pegelstands näherungsweise durch die Funktion p beschrieben werden:
\(p\left( t \right) = - 3,5 \cdot {10^{ - 6}} \cdot {t^3} + 6,3 \cdot {10^{ - 4}} \cdot {t^2} - 0,011 \cdot t + 7,661\) mit \(0 \le t \le 168\)
wobei
t | Zeit in h |
p(t) | Pegelstand zur Zeit t in m |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Abweichung des höchsten Pegelstands während des Hochwassers vom „üblichen“ Pegelstand von 2,5 m.
[1 Punkt]
Zur Zeit t1 gilt:
\(p''\left( {{t_1}} \right) = 0\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung von t1 im gegebenen Sachzusammenhang.
[1 Punkt]
Aufgabe 1150
AHS - 1_150 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion – Funktionsuntersuchung
Gegeben ist eine Polynomfunktion f mit der Funktionsgleichung \(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\) mit den Parametern \(a \ne 0;\,\,\,\,\,\,\,a,\,\,b,\,\,c,\,\,d \in {\ {\Bbb R}}\) . Die Funktion f hat einen Hochpunkt im Punkt H = (2|2) und einen Wendepunkt an der Stelle x2 = –1. An der Stelle x3 = 3 hat die Steigung der Funktion den Wert –9.
- Aussage 1: \(f'\left( 3 \right) = - 9\)
- Aussage 2: \(f\left( 2 \right) = 0\)
- Aussage 3: \(f''\left( { - 1} \right) = 0\)
- Aussage 4: \(f'\left( 2 \right) = 0\)
- Aussage 5: \(f''\left( 2 \right) = 0\)
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1725
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 16. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer Polynomfunktion dritten Grades
Gegeben ist eine Polynomfunktion f dritten Grades. An den beiden Stellen x1 und x2 mit x1 < x2 gelten folgende Bedingungen:
\(\eqalign{
& f'\left( {{x_1}} \right){\text{ = 0 und }}f''\left( {{x_1}} \right) < 0 \cr
& f'\left( {{x_2}} \right) = 0{\text{ und }}f''\left( {{x_2}} \right) > 0 \cr} \)
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die für die Funktion f auf jeden Fall zutreffen.
- Aussage 1: \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)
- Aussage 2: Es gibt eine weitere Stelle x3 mit \(f'\left( {{x_3}} \right) = 0\)
- Aussage 3: Im Intervall \(\left[ {{x_1},{x_2}} \right]\) gibt es eine Stelle x3 mit \(f\left( {{x_3}} \right) > f\left( {{x_1}} \right)\)
- Aussage 4: Im Intervall \(\left[ {{x_1},{x_2}} \right]\) gibt es eine Stelle x3 mit \(f''\left( {{x_3}} \right) = 0\)
- Aussage 5: Im Intervall \(\left[ {{x_1},{x_2}} \right]\) gibt es eine Stelle x3 mit \(f'\left( {{x_3}} \right) > 0\)
[0 / 1 Punkt]
Aufgabe 1846
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 17. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionseigenschaften
In der nachstehenden Abbildung ist der Graph der 1. Ableitungsfunktion f′ einer Polynomfunktion f dargestellt.
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die auf die Funktion f auf jeden Fall zutreffen.
- Aussage 1: Im Intervall [–3; 3] ist die Funktion f streng monoton steigend.
- Aussage 2: Der Graph von f ist im Intervall [–3; 3] symmetrisch zur senkrechten Achse.
- Aussage 3: Die Funktion f hat im Intervall [–3; 3] mindestens eine Wendestelle.
- Aussage 4: Im Intervall [–3; 3] sind alle Funktionswerte von f positiv.
- Aussage 5: Die Funktion f hat im Intervall [–3; 3] mindestens eine lokale Extremstelle.
[2 aus 5]
[0 / 1 P.]
Aufgabe 4163
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vitamin C - Aufgabe A_281
Teil c
Nach der Einnahme einer Vitamin-C-Tablette steigt die Vitamin-C-Konzentration im Blut zunächst an und sinkt danach wieder ab. Die Funktion c beschreibt näherungsweise den zeitlichen Verlauf der Vitamin-C-Konzentration im Blut einer bestimmten Person.
\(c\left( t \right) = 24 \cdot \left( {{e^{ - 0,0195 \cdot t}} - {e^{ - 1,3 \cdot t}}} \right) + 3\)
- t ... Zeit seit der Einnahme der Vitamin-C-Tablette in h
- c(t) ... Vitamin-C-Konzentration im Blut zur Zeit t in Mikrogramm pro Milliliter (μg/ml)
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie, dass die maximale Vitamin-C-Konzentration im Blut der Person gerundet \(25,18\,\,\mu g/ml\) beträgt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie denjenigen Ausdruck an, der die maximale Vitamin-C-Konzentration in mg/L angibt.
[1 aus 5] [1 Punkt]
- Aussage 1: 0,02518 mg/L
- Aussage 2: 25,18 mg/L
- Aussage 3: 25 180 mg/L
- Aussage 4: 0,00002518 mg/L
- Aussage 5: 25 180 000 mg/L
Aufgabe 4314
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganzkörperhyperthermie - Aufgabe A_158
Bei einem Therapieverfahren wird die Körpertemperatur bewusst stark erhöht (künstliches Fieber).
Teil b
1. Teilaufgabe - Bearbeitungszeit 5:40
Dokumentieren Sie, wie die maximale Körpertemperatur im angegebenen Zeitintervall mithilfe der Differenzialrechnung berechnet werden kann.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum der Graph einer Polynomfunktion 3. Grades höchstens 2 Extrempunkte haben kann.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4405
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil c
Die Dichte von Wasser in Abhängigkeit von der Temperatur kann unter bestimmten Bedingungen näherungsweise durch die Funktion ϱ beschrieben werden:
\(\rho \left( T \right) = a - b \cdot {\left( {T - 4} \right)^2}{\text{ mit }}0 < \rho \leqslant 10\)
T |
Temperatur in °C |
\(\rho \left( T \right)\) | |
a,b |
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Funktionsgleichung die Koordinaten des Scheitelpunkts S von ϱ ab.
S = ( | )
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie mathematisch, dass der Scheitelpunkt ein Hochpunkt der Funktion ϱ ist.
[1 Punkt]
Es gilt: a = 999,972 und b = 0,007
Die Gleichung einer Tangente an den Graphen der Funktion ϱ lautet:
\(f\left( T \right) = 0,028 \cdot T + d\)
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Parameter d.
[1 Punkt]
Jemand verwendet zur Berechnung der Dichte von Wasser bei 10 °C die obige Funktion ϱ mit den Parametern a = 999,972 und b = 0,007. Die Dichte von Wasser bei 10 °C beträgt jedoch laut einer Tabelle 999,700 kg/m3.
4. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des absoluten Fehlers bei Verwendung der Funktion ϱ anstelle des Tabellenwerts.
[1 Punkt]