Geschwindigkeit-Zeit-Funktion
Hier findest du folgende Inhalte
Formeln
Maßzahl, Größe und Einheit
Physikalische Größen sind das Produkt aus einer Maßzahl mit einer Einheit.
Größe = Maßzahl x Einheit
Maßzahl
Die Maßzahl gibt den Betrag (Menge, Stückzahl,...) als eine konkrete Zahl aus der Menge der reellen Zahlen an.
Basisgröße
Die Größe(nart) legt fest, um welche physikalische Größe es sich handelt. Es gibt sieben voneinander unabhängige Basisgrößen.
Abgeleitete Größe
Aus den sieben von einander unabhängigen Basisgrößen setzen sich alle anderen physikalischen Größen zusammen.
Basiseinheit
Jeder der sieben Basisgrößen ist eine Basiseinheit und ein Einheitenzeichen zugeordnet. Manche Basiseinheiten sind von anderen Basiseinheiten abhängig. So geht etwa in die Definition von der Basiseinheit "Meter" die Basiseinheit "Sekunde" ein. Die Einheit umfasst auch die Zehnerpotenz der Maßzahl. Zum Beispiel für 103 steht Kilo, für 106 steht Mega oder für 10-9 steht nano vor der eigentlichen Einheit.
Einheit
Einheiten dienen dazu Größen zu messen. Für abgeleitete Größen verwendet man Einheiten, die sich aus Basiseinheiten zusammen setzen.
Beispiel:
Zwei Holzstücke mit 7cm bzw. 7m Länge. Diese beiden physikalischen Größen setzen sich zusammen aus
- einer Maßzahl, die den Betrag angibt (in beiden Fällen "7")
- einer Größe(nart), die festlegt um welche Qualität es sich handelt (in beiden Fällen "Länge")
- einer Einheit, die festlegt wie der Betrag abzuzählen ist (im Beispiel "cm" bzw. "m")
Beispiel:
Vergleiche 7m, 7cm
Wir bringen auf die gleiche Einheit "m"
7cm = 0,07m
Nun können wir die Werte an Hand ihrer Zahlenwerte wie folgt vergleichen
7m > 0,07m=7cm
Ein Holzstück von 7m Länge ist länger als ein Holzstück mit einer Länge von 7cm.
7 SI Basisgrößen und ihre Basiseinheiten
Die 7 Basisgrößen sind von einander unabhängige Grundgrößen der Physik. SI steht für „Système international d’unités“, das ist das am weitesten verbreitete internationale Einheitensystem.
Basisgröße, Formelzeichen | Basiseinheit | Einheitszeichen |
Länge l | Meter | m |
Masse m | Kilogramm | kg |
Zeit t | Sekunde | s |
elektrische Stromstärke I | Ampere | A |
Temperatur T | Kelvin | K |
Stoffmenge n | Mol | mol |
Lichtstärke Iv | Candela | cd |
SI abgeleitete Größen und ihre Einheiten
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten sind
Abgeleitete physikalische Größe, Formelzeichen | Einheit | Einheitszeichen |
Fläche A | Quadratmeter | m² |
Volumen V | Kubikmeter | m³ |
Geschwindigkeit v | Kilometer pro Stunde | m/s |
Beschleunigung a | Meter pro Sekundenquadrat | m/s² |
mechanische Kraft F | Newton | N |
Frequenz f | Herz | Hz |
Arbeit W, Energie E, Wärmemenge Q | Joule | J |
mechanische Leistung P | Watt | W |
Druck p | Pascal | Pa |
Lichtstrom Φ | Lumen | lm |
Beleuchtungsstärke E | Lux | lx |
SI abgeleitete Größen und ihre Einheiten aus der Elektrotechnik
Während die 7 Basisgrößen von einander unabhängig sind, haben daraus zusammengesetzte, sogenannte abgeleitete Größen entsprechende abgeleitete Einheiten. Wichtige abgeleitete Größen und ihre Einheiten aus dem Gebiet der Elektrotechnik sind
Abgeleitete elektrotechnische Größe, Formelzeichen | Einheit | Einheitszeichen |
magnetische Feldstärke \({\overrightarrow H }\) | Ampere pro m | A/m |
elektrische Feldstärke \({\overrightarrow E }\) | Volt pro m | V/m |
Spannung U | Volt | V |
Arbeit W, Energie E | Joule | J |
elektrische Ladung Q | Coulomb | C |
elektrische Leistung P | Watt | W |
ohmscher Widerstand R | Ohm | \(\Omega\) |
elektrische Kapazität C | Farad | F |
magnetische Induktivität L | Henry | H |
magnetischer Fluss \(\Phi\) | Weber | Wb |
magnetische Flussdichte \({\overrightarrow B }\) | Tesla | T |
Physikalische Größen - Auswahl und Definition gemäß Formelsammlung AHS
Größe | Formel | Formel | Formel |
Dichte ρ | \(\rho = \dfrac{m}{v}\) | ||
Leistung P | \(P = \dfrac{{\Delta E}}{{\Delta t}}\) | \(P = \dfrac{{\Delta W}}{{\Delta t}}\) | \(P = \dfrac{{dW\left( t \right)}}{{dt}}\) |
Kraft F | \(F = m \cdot a\) | \(F = \dfrac{{dW}}{{ds}}\) | |
Arbeit | \(W = F \cdot s\) | \(W = \int {F\left( s \right)\,\,\operatorname{ds} }\) | |
kinetische Energie Ekin | \({E_{kin}} = \dfrac{{m \cdot {v^2}}}{2}\) | ||
potentielle Energie Epot | \({E_{pot}} = m \cdot g \cdot h\) | ||
gleichförmige geradlinige Bewegung v(t) | \(v = \dfrac{s}{t}\) | \(v = \dfrac{{ds}}{{dt}}\) | \(v\left( t \right) = s'\left( t \right) = \dfrac{{ds}}{{dt}}\) |
gleichmäßig beschleunigte geradlinige Bewegung a(t) | \(v = a \cdot t + {v_0}\) | \(a = \dfrac{{dv}}{{dt}}\) | \(a\left( t \right) = v'\left( t \right) = \dfrac{{dv}}{{dt}} = s''\left( t \right) = \dfrac{{{d^2}s}}{{d{t^2}}}\) |
Bewegungsvorgänge - Auswahl und Definition gemäß Formelsammlung BHS
Größe | Formel |
Zeit t | \(t\) |
Weg-Zeit-Funktion s(t) | \(s\left( t \right) = \int {v\left( t \right)} \,\,dt\) |
Geschwindigkeit-Zeit-Funktion v(t) | \(v(t) = s'\left( t \right) = \mathop s\limits^ \bullet = \dfrac{{ds}}{{dt}} = \int {a\left( t \right)} \,\,dt\) |
Beschleunigung-Zeit-Funktion a(t) | \(a\left( t \right) = s''\left( t \right) = \mathop s\limits^{ \bullet \bullet } = \dfrac{{{d^2}s}}{{d{t^2}}} = v'\left( t \right) = \mathop v\limits^ \bullet = \dfrac{{dv}}{{dt}}\) |
Anmerkung zur auf Universitäten üblichen Kurzschreibweise von "Ableitungen nach der Zeit": Die Notation mit einem "Punkt" über dem Formelzeichen bedeutet, dass es sich um die 1 Ableitung nach der Zeit handelt. Zwei "Punkte" bedeuten, dass es sich um die 2. Ableitung nach der Zeit handelt.
Größen und ihre Einheiten - Auswahl gemäß Formelsammlung AHS
Größe | Einheit | Symbol | Beziehung zu SI-Einheiten |
Temperatur T | Grad Celsius Grad Kelvin |
°C K |
\(\Delta t = \Delta T\) |
Frequenz f | Hertz | Hz | \(1 \cdot Hz = 1 \cdot {s^{ - 1}}\) |
Arbeit W, Energie E, Wärmemenge Q | Joule | J | \(1 \cdot J = 1 \cdot kg \cdot {m^{2}}\cdot s^{ - 2}\) |
Kraft F | Newton | N | \(1 \cdot N = 1 \cdot kg \cdot m \cdot {s^{ - 2}}\) |
Drehmoment M | Newtonmeter | \(N \cdot m\) | \(1 \cdot N \cdot m = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 2}}\) |
Elektrischer Widerstand R | Ohm | \(\Omega\) | \(1 \cdot \Omega = 1 \cdot V \cdot {A^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 2}} \cdot {s^{ - 3}}\) |
Druck p | Pascal | Pa | \(1 \cdot Pa = 1 \cdot N \cdot {m^{ - 2}} = 1 \cdot kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}\) |
Elektrische Stromstärke I | Ampere | A | \(1 \cdot A = 1 \cdot C \cdot {s^{ - 1}}\) |
Elektrische Spannung U | Volt | V | \(1 \cdot V = 1 \cdot J \cdot {C^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {A^{ - 1}} \cdot {s^{ - 3}}\) |
Leistung P | Watt | W | \(1 \cdot W = 1 \cdot J \cdot {s^{ - 1}} = 1 \cdot kg \cdot {m^2} \cdot {s^{ - 3}}\) |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgaben
Aufgabe 4205
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil c
Der nachstehend dargestellte Graph zeigt annähernd den Geschwindigkeitsverlauf eines im Stadtgebiet fahrenden Autos.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie näherungsweise die Länge des im Zeitintervall [0; 45] zurückgelegten Weges.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie die Höchstgeschwindigkeit des Autos ab. Geben Sie das Ergebnis in km/h an.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1356
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 18. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Geschwindigkeitsfunktion
Die nachstehende Abbildung zeigt den Graphen einer Funktion v, die die Geschwindigkeit v(t) in Abhängigkeit von der Zeit t (t in Sekunden) modelliert.
Aufgabenstellung:
Geben Sie an, was die Aussage \(\int\limits_0^5 {v\left( t \right)} \,\,dt > \int\limits_5^{10} {v\left( t \right)} \,\,dt\) im vorliegenden Kontext bedeutet!
Aufgabe 1892
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 15. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zeit-Geschwindigkeit-Funktion
Für die Bewegung eines bestimmten Körpers gibt v(t) die Geschwindigkeit zum Zeitpunkt t an (t in s, v(t) in m/s). Der Graph von v ist im Zeitintervall [0; 30] in der nachstehenden Abbildung dargestellt.
Unten stehend sind Aussagen über die Zeit-Weg-Funktion s und die Zeit-Beschleunigung- Funktion a für diese Bewegung angeführt (t in s, s(t) in m, a(t) in m/s2).
- Aussage 1: Es gilt: s(10) < 10.
- Aussage 2: Es gibt einen Zeitpunkt t0 ∈ [0; 30] mit a(t0) = 0.
- Aussage 3. Zum Zeitpunkt t = 15 ist die Beschleunigung maximal.
- Aussage 4: Es gilt: s(30) – s(0) > 300.
- Aussage 5: Für alle t1, t2 ∈ [0; 30] mit t2 > t1 gilt: s(t2) > s(t1).
Aufgabenstellung - Bearbeitungszeit 05:40
Kreuzen Sie die beiden zutreffenden Aussagen an.
[2 aus 5]
Aufgabe 4096
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wings for Life World Run - Aufgabe B_022
Teil a
Beim Wings for Life World Run starten alle Läufer/innen gleichzeitig. Eine halbe Stunde später verlässt ein Verfolgerauto („Catcher-Car“) den Start und fährt den Läuferinnen und Läufern nach. Die Teilnehmer/innen laufen jeweils so lange, bis sie vom Catcher-Car eingeholt werden. Der vom Catcher-Car innerhalb der ersten 2,5 Stunden ab dem Start der Läufer/innen zurückgelegte Weg kann näherungsweise durch die folgende stückweise definierte Funktion s beschrieben werden:
\(s\left( t \right)\left\{ {\begin{array}{*{20}{c}} 0&{{\rm{für}}}&{t \le 0,5}\\ {}&{{\rm{für}}}&{0,5 < t \le 1,5}\\ {16 \cdot t - 9}&{{\rm{für}}}&{1,5 < t \le 2,5} \end{array}} \right.\)
mit
t | Zeit ab dem Start der Läufer/innen in h |
s(t) | der vom Catcher-Car zur Zeit t zurückgelegte Weg in km |
Im Zeitintervall ]0,5; 1,5] fährt das Catcher-Car mit konstanter Geschwindigkeit.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Weg-Zeit-Funktion für das Zeitintervall ]0,5; 1,5] in der gegebenen Funktionsdefinition.
[1 Punkt]
1. Teilaufgabe - Bearbeitungszeit 5:40
Die Geschwindigkeit eines bestimmten Läufers kann näherungsweise durch folgende Funktion v beschrieben werden:
\(v\left( t \right) = - 0,73 \cdot {t^2} + 2,43 \cdot t + 10\)
v(t) | Geschwindigkeit des Läufers zur Zeit t in km/h |
Berechnen Sie denjenigen Zeitpunkt, zu dem dieser Läufer vom Catcher-Car eingeholt wird.
[1 Punkt]
Aufgabe 4167
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnverkehr in Österreich - Aufgabe A_283
Teil a
Eine Bahnfahrt von Wien nach Graz dauert 2 Stunden und 35 Minuten. Die mittlere Reisegeschwindigkeit beträgt dabei rund 81,83 km/h. Im Jahr 2026 soll der Semmering-Basistunnel fertiggestellt werden. Dadurch wird sich die Fahrtstrecke um 13,7 Kilometer und die Fahrtdauer um 50 Minuten verkürzen.
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die mittlere Reisegeschwindigkeit zwischen Wien und Graz für die verkürzte Fahrt.
[2 Punkte]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4177
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Pauliberg - Aufgabe A_067
Der Pauliberg ist Österreichs jüngster erloschener Vulkan und ein beliebtes Ausflugsziel im Burgenland.
Teil b
Beim Pauliberg gibt es einen beliebten Wanderweg. Sarah benötigt für die a Kilometer lange Wanderung b Stunden. Leonie wandert auf der gleichen Strecke, startet aber 1,5 Stunden später. Sarah und Leonie erreichen gleichzeitig das Ziel.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie aus a und b eine Formel zur Berechnung der mittleren Geschwindigkeit v von Leonie in km/h.
v =
[1 Punkt]
Aufgabe 4243
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143
Teil a
Die Bremswege eines PKW auf schneebedeckter sowie auf trockener Fahrbahn werden miteinander verglichen. Das nachstehende Geschwindigkeit-Zeit-Diagramm zeigt modellhaft den zeitlichen Verlauf der Geschwindigkeit vS auf schneebedeckter Fahrbahn sowie den zeitlichen Verlauf der Geschwindigkeit vT auf trockener Fahrbahn vom Reagieren der Bremse bis zum Stillstand des PKW.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe des obigen Diagramms die (negative) Beschleunigung auf schneebedeckter Fahrbahn.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Der Bremsweg ist diejenige Strecke, die der PKW vom Reagieren der Bremse (t = 0) bis zum Stillstand zurücklegt. Veranschaulichen Sie im obigen Diagramm den Bremsweg auf trockener Fahrbahn.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe des obigen Diagramms die Differenz zwischen dem Bremsweg auf schneebedeckter Fahrbahn und dem Bremsweg auf trockener Fahrbahn.
[1 Punkt]
Aufgabe 4298
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2016 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Section-Control - Aufgabe_A226
Section-Control bezeichnet ein System zur Überwachung der Einhaltung von Tempolimits im Straßenverkehr. Dabei wird nicht die Geschwindigkeit an einem bestimmten Punkt gemessen, sondern die mittlere Geschwindigkeit über eine längere Strecke ermittelt.
Teil a
In einem 6 km langen Baustellenbereich wird eine Section-Control errichtet. Es gilt eine zulässige Höchstgeschwindigkeit von 60 km/h.
Jemand behauptet: „Wenn ich die zulässige Höchstgeschwindigkeit im gesamten Baustellenbereich um 10 % überschreite, dann verkürzt sich meine Fahrzeit im Baustellenbereich um 10 %.“
1. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass diese Behauptung falsch ist.
[1 Punkt]
Aufgabe 4482
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bordcomputer - Aufgabe A_308
Ein Bordcomputer hat 12 min lang die Geschwindigkeit eines PKW aufgezeichnet. Der Graph der so ermittelten Geschwindigkeit-Zeit-Funktion v ist im nachstehenden Diagramm modellhaft dargestellt.
Teil b
Ein Motorrad ist in diesen 12 min mit einer konstanten Geschwindigkeit von 1,75 km/min gefahren.
1. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie im nachfolgenden Diagramm den Graphen der Geschwindigkeit-Zeit-Funktion dieses Motorrads ein.
[0 / 1 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4483
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bordcomputer - Aufgabe A_308
Ein Bordcomputer hat 12 min lang die Geschwindigkeit eines PKW aufgezeichnet. Der Graph der so ermittelten Geschwindigkeit-Zeit-Funktion v ist im nachstehenden Diagramm modellhaft dargestellt.
Teil c
1. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: Der vom PKW zurückgelegte Weg nimmt im Intervall [4 min; 8 min] ab.
- Aussage 2: Die Geschwindigkeit des PKW nimmt im Intervall [4 min; 8 min] zu.
- Aussage 3: Die Beschleunigung des PKW ist im Intervall [4 min; 8 min] negativ.
- Aussage 4: Die mittlere Geschwindigkeit des PKW ist im Intervall [4 min; 8 min] geringer als 1,5 km/min.
- Aussage 5: Es gibt einen Zeitpunkt im Intervall [4 min; 8 min], zu dem der PKW mit 75 km/h fährt.