Potenzen differenzieren
Hier findest du folgende Inhalte
Formeln
Gängige Ableitungsfunktionen
Die Ableitungsfunktion f‘(x) ordnet jeder Stelle x0 der Funktion f(x) ihren Differentialquotienten zu. Der Differentialquotient gibt die momentane Änderungsrate im Punkt x0 an und entspricht der Steigung k der Tangente an die Funktion f an der Stelle x0. In der naturwissenschaftlich technischen Praxis sind die 1. , 2. und 3. Ableitung (für Kurvendiskussionen) von Bedeutung. Die Ableitungen gängiger Funktionen solle man auswendig können.
Nachfolgend jene Ableitungsfunktionen, die für die Matura bzw. das Abitur von Bedeutung sind.
Konstante Funktion differenzieren (Faktorregel)
Die Ableitung f'(x) einer konstanten Funktion ist null, weil auch die Steigung der konstanten Funktion null ist . Der Graph jeder konstanten Funktion f(x) verläuft horizontal.
\(\eqalign{ & f\left( x \right) = c \cr & f'\left( x \right) = 0 \cr}\)
Lineare Funktion differenzieren
Die Ableitung f'(x) einer linearen Funktion f(x) (das ist eine Gerade) entspricht deren Steigung. Die Steigung k einer Geraden ist über deren ganzen Verlauf konstant.
\(\eqalign{ & f\left( x \right) = kx + d \cr & f'\left( x \right) = k \cr}\)
Potenzfunktionen differenzieren
Potenzfunktionen werden differenziert, indem man den Exponenten n (mit samt seinem Vorzeichen) vor die Potenz setzt und indem man den Exponenten der Funktion f(x) um minus 1 reduziert.
Merksatz: "Exponent runter, Exponent minus 1, Innere Ableitung"
\(\eqalign{ & f\left( x \right) = {x^n} \cr & f'\left( x \right) = n \cdot {x^{n - 1}} \cr} \)
Produkt aus einer Konstanten und einer Potenzfunktion
\(\eqalign{ & f\left( x \right) = c \cdot {x^n} \cr & f'\left( x \right) = n \cdot c \cdot {x^{n - 1}} \cr} \)
siehe auch: Konstanten- oder Faktorregel beim Differenzieren
Potenzfunktion mit negativem Exponenten
\(\eqalign{ & f(x) = {x^{ - n}} \cr & f'\left( x \right) = - n \cdot {x^{ - n - 1}} \cr} \)
Polynom differenzieren
Polynome werden unter Berücksichtigung der Faktor- und der Potenzregel differenziert. Bei Klammerausdrücken muss gemäß der Kettenregel auch noch die innere Ableitung als zusätzlicher Faktor angeschrieben werden.
\(\eqalign{ & f\left( x \right) = a \cdot {\left( {bx + c} \right)^n} + d \cr & f'\left( x \right) = a \cdot n \cdot b \cdot {\left( {bx + c} \right)^{n - 1}} \cr} \)
siehe auch: Kettenregel
Potenzfunktion steht im Nenner
Bei einfachen Brüchen bietet sich als Alternative zur Quotientenregel an, den Bruch in eine Potenzfunktion f(x) umzuwandeln und anschließend deren Ableitungsfunktion f'(x) zu bilden.
\(\eqalign{ & f\left( x \right) = \dfrac{1}{{{x^n}}} = {x^{ - n}} \cr & f'\left( x \right) = - n \cdot {x^{ - n - 1}} = - n \cdot {x^{ - \left( {n + 1} \right)}} = - \dfrac{n}{{{x^{n + 1}}}} \cr} \)
Wurzelfunktionen differenzieren
Bei Wurzelfunktionen bietet es sich an, den Wurzelausdruck zunächst in eine Potenzfunktion f(x) umzuwandeln und anschließend deren Ableitungsfunktion f'(x) zu bilden.
Quadratwurzel
\(\eqalign{ & f\left( x \right) = \sqrt x = {x^{\dfrac{1}{2}}} \cr & f'\left( x \right) = \frac{1}{{2 \cdot \sqrt x }} \cr} \)
n-te Wurzel
\(\eqalign{ & f(x) = \root n \of x = {x^{\dfrac{1}{n}}} \cr & f'(x) = \dfrac{1}{{n \cdot \root n \of {{x^{n - 1}}} }}{\text{ }} \cr} \)
Quadratwurzel im Nenner
\(\eqalign{ & f\left( x \right) = \dfrac{1}{{\sqrt x }} = {x^{ - \,\,\dfrac{1}{2}}} \cr & f'\left( x \right) = - \dfrac{1}{2}{x^{ - \,\,\dfrac{3}{2}}} \cr} \)
Exponentialfunktionen differenzieren
Bei der Exponentialfunktion zur Basis e (eulersche Zahl) handelt es sich um die einzige Funktion f(x), die mit Ihrer eigenen Ableitung f'(x) identisch ist.
\(\begin{array}{l} f\left( x \right) = {e^x}\\ f' = {e^x} \end{array}\)
Exponentialfunktion, mit einem zusätzlichen konstanten Faktor im Exponenten
\(\eqalign{ & f\left( x \right) = {e^{kx}} \cr & f'\left( x \right) = k \cdot {e^{kx}} \cr}\)
Exponentialfunktionen zur beliebigen positiven Basis a
Bei der Exponetialfunktion zur beliebigen Basis a, kommt bei der Ableitung zur Funktion selbst noch der Faktor ln a dazu.
\(\eqalign{ & f\left( x \right) = {a^x} \cr & f'\left( x \right) = {a^x} \cdot \ln a \cr}\)
Logarithmusfunktionen differenzieren
Natürlicher Logarithmus
Die Ableitung der Logarithmusfunktionen ist "1 geteilt durch x".
\(\eqalign{ & f\left( x \right) = \ln x \cr & f'\left( x \right) = \dfrac{1}{x} \cr}\)
Logarithmus von x zur Basis a
\(\eqalign{ & f\left( x \right) = {}^a\log x \cr & f'\left( x \right) = \dfrac{1}{{x \cdot \ln a}} = \dfrac{1}{x} \cdot {}^a\log e \cr} \)
Logarithmus mit Klammer im Numerus
Besteht der Numerus aus einer Klammer, dann ist zudem die Kettenregel anzuwenden.
\(\eqalign{ & f(x) = \ln (ax + b) \cr & f'\left( x \right) = a \cdot \dfrac{1}{{\left( {ax + b} \right)}} \cr} \)
Winkelfunktionen differenzieren
Winkelfunktionen, sie werden auch trigonometrische Funktionen genannt, bezeichnen Zusammenhänge zwischen einem Winkel und Verhältnissen von Seiten (wie Hypotenuse, Ankathete und Gegenkathete) im rechtwinkeligen Dreieck. Im Rahmen von Kurvendiskussionen benötigt man die 1., 2. und 3. Ableitung der jeweiligen Funktion.
Sinus differenzieren
Die Ableitung der Sinusfunktion ist die Kosinusfunktion.
\(\eqalign{ & f\left( x \right) = \sin x \cr & f'\left( x \right) = \cos x \cr}\)
Kosinus differenzieren
Die Ableitung der Kosinusfunktion ist die negative Sinusfunktion.
\(\eqalign{ & f\left( x \right) = \cos x \cr & f'\left( x \right) = - \sin x \cr}\)
Merkhilfe für die Vorzeichen beim Differenzieren bzw. Integrieren von Sinus und Kosinus:
Tangens differenzieren
Da tan x gleich ist mit (sin x dividiert durch cos x), kann man dessen Ableitung durch Einsatz der Quotientenregel zu (1 dividiert durch cos2x) errechnen.
\(\eqalign{ & f\left( x \right) = \tan x \cr & f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x \cr}\)
Kotangens differenzieren
Da cot x gleich ist mit (cos x dividiert durch sin x), kann man dessen Ableitung durch Einsatz der Quotientenregel zu (-1 dividiert durch sin2x) errechnen.
\(\eqalign{ & f\left( x \right) = \cot x \cr & f'\left( x \right) = - \dfrac{1}{{{{\sin }^2}x}} = - \left( {1 + {{\cot }^2}x} \right) \cr}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgaben
Aufgabe 127
Differenzieren von Potenzen
Gegeben sei die Funktion: \(f(x) = 1;\)
Bilde die Ableitungsfunktion f‘(x) gemäß den Regeln der Differentialrechnung
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 128
Differenzieren von Potenzen
Gegeben sei die Funktion: \(f(x) = x;\)
Bilde die Ableitungsfunktion gemäß den Regeln der Differentialrechnung.
1. Teilaufgabe: f'(x)
2. Teilaufgabe: f''(x)
Aufgabe 129
Differenzieren von Potenzen
Gegeben sei die Funktion: \(f(x) = {x^2};\)
Bilde die Ableitungsfunktion gemäß den Regeln der Differentialrechnung.
1. Teilaufgabe: f'(x)
2. Teilaufgabe: f''(x)
3. Teilaufgabe: f'''(x)
Aufgabe 130
Differenzieren von Potenzen
Gegeben sei die Funktion: \(f(x) = {x^3};\)
Bilde die Ableitungsfunktion gemäß den Regeln der Differentialrechnung.
1. Teilaufgabe: f'(x)
2. Teilaufgabe: f''(x)
3. Teilaufgabe: f'''(x)
4. Teilaufgabe: f''''(x)
Aufgabe 4003
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fußballspielen im Park - Aufgabe A_250
Teil a
Roland und Julia spielen im Park Fußball. Roland legt den Ball auf die horizontale Wiese, nimmt Anlauf und schießt. Die Flugbahn des Balls kann näherungsweise durch den Graphen einer Polynomfunktion 3. Grades h beschrieben werden. Dabei wird der Ball als punktförmig angenommen.
\(h\left( x \right) = - 0,003 \cdot {x^3} + 0,057 \cdot {x^2}{\text{ mit }}x \geqslant 0\)
x | horizontale Entfernung des Balls von der Abschussstelle in Metern (m) |
h(x) | Höhe des Balls über dem Boden an der Stelle x in m |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den für diesen Sachzusammenhang größtmöglichen sinnvollen Definitionsbereich für die Funktion h. [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den höchsten Punkt der Flugbahn. [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 4019
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil d
Um die Unebenheit eines anderen Bodens zu ermitteln, soll der Punkt T bestimmt werden. Im Punkt T ist die Tangente an den Graphen von p parallel zur Geraden f (siehe nachstehende Skizze).
Es gilt:
\(\eqalign{ & p\left( x \right) = - 70,000 \cdot {x^4} + 150,000 \cdot {x^3} - 100,000 \cdot {x^2} + 17,000 \cdot x + 3,000 \cr & f\left( x \right) = - 4,046 \cdot x + 4,378 \cr} \)
mit:
x | horizontale Koordinate in Metern (m) |
p(x), f(x) | vertikale Koordinate in Millimetern (mm) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung, mit der die x-Koordinate des Punktes T berechnet werden kann.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die x-Koordinate des Punktes T.
[1 Punkt]
Aufgabe 131
Differenzieren von Potenzen
Gegeben sei die Funktion: \(f(x) = 3{x^3};\)
Bilde die Ableitungsfunktion gemäß den Regeln der Differentialrechnung.
1. Teilaufgabe: f'(x)
2. Teilaufgabe: f''(x)
3. Teilaufgabe: f'''(x)
4. Teilaufgabe: f''''(x)
Aufgabe 132
Differenzieren von Wurzeln
Gegeben sei die Funktion \(f(x) = \sqrt x\)
Bilde die Ableitungsfunktion f‘(x) gemäß den Regeln der Differentialrechnung
Aufgabe 133
Differenzieren von Wurzeln
Gegeben sei die Funktion \(f(x) = \root 4 \of {{x^3}}\)
Bilde die Ableitungsfunktion f‘(x) gemäß den Regeln der Differentialrechnung
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 134
Differenzieren von Wurzeln
Gegeben sei die Funktion \(f(x) = 6\root 3 \of x\)
Bilde die Ableitungsfunktion f‘(x) gemäß den Regeln der Differentialrechnung
Aufgabe 135
Differenzieren von Wurzeln
Gegeben sei die Funktion \(f(x) = \dfrac{1}{{\root 3 \of {{x^2}} }}\)
Bilde die Ableitungsfunktion f‘(x) gemäß den Regeln der Differentialrechnung
Aufgabe 144
Kettenregel beim Differenzieren
Gegeben sei die Funktion \(f(x) = {\left( {3{x^2} - 6x} \right)^2}\)
Bilde die Ableitungsfunktion f‘(x) gemäß den Regeln der Differentialrechnung