Arithmetisches Mittel
Das arithmetische Mittel bzw. der Durchschnittswert ist ein Lagemaß, welches sich aus der Summe aller erhobenen Werte - direkt aus der Urliste - dividiert durch die Anzahl der Werte errechnet.
\(\overline x = \dfrac{{{x_1} + {x_2} + ...{x_n}}}{n} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}}\)
\(\overline x\) ... gesprochen als "x quer"
Der arithmetische Mittelwert, auch als Durchschnittswert bezeichnet, ist das wichtigste Zentralmaß in der beschreibenden Statistik. Man spricht von einem ungewichteten Mittelwert, da alle gemessenen Werte xi mit dem gleichen Gewicht 1/n in den Mittelwert eingehen. Die Summe aller Abweichungen der einzelnen Stichproben vom arithmetischen Mittelwert heben sich auf und sind daher Null. Große Ausreißer in der Stichprobe, asymmetrische oder mehrgipflige Verteilungen beeinflussen das arithmetische Mittel sehr stark und führen zu nicht repräsentativen Aussagen.
Getrimmtes arithmetisches Mittel
Um den arithmetischen Mittelwert robuster zu machen, werden beim "getrimmten" arithmetischen Mittel die k kleinsten und die k größten Ausreißer nicht berücksichtigt, wobei: k << n/2 sein muss.
\(\overline x = \dfrac{{{x_1} + {x_2} + ...{x_n}}}{n} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}}\)
Bei einer Trimmung um k=3 bzw. um 3% würden bei einem Datensatz mit n=100 Werte die 3 größten und die 3 kleinsten Werte gestrichen werden, womit in obiger Formel n=94 und x4, x5, ... x96, x97 gilt.
Gewogenes bzw. gewichtetes arithmetisches Mittel
Das gewogene arithmetische Mittel errechnet sich, wenn nicht mehr die Urliste sondern bereits die absoluten Häufigkeiten H(xi) bzw. die relativen Häufigkeiten hi der Ausprägung xi vorliegen.
\(\eqalign{ & \overline x = {{{x_1} \cdot {H_1} + {x_2} \cdot {H_2} + ... + {x_m} \cdot {H_m}} \over n} = {1 \over n}\sum\limits_{i = 1}^m {{x_i} \cdot {H_i}} \cr & \overline x = {x_1} \cdot {h_1} + {x_2} \cdot {h_2} + ... + {x_m} \cdot {H_m} \cr}\)
Die absolute Häufigkeit Hi gibt an, wie viele Elemente mit dem entsprechenden i-ten Merkmal gezählt wurden.
Unterschied geometrisches und arithmetisches Mittel:
- Das geometrische Mittel errechnet sich über ein Produkt und die anschließende n-te Wurzel, während sich das arithmetische Mittel über eine Summe und durch anschließende Division durch n errechnet.
- Das geometrische Mittel ist kleiner oder gleich dem arithmetischen Mittel. Es wird vorwiegend in den Finanz- und Wirtschaftswissenschaften für Wachstumsfaktoren eingesetzt, etwa zur Berechnung vom Durchschnitt einer prozentuellen Verzinsung.
- Das geometrische Mittel verwendet man, wenn die Stichproben von einander abhängig sind, etwa wie die Kapitalrendite über mehrere Jahre bei unterschiedlicher Verzinsung über die Jahre hinweg. Keiner der gemessenen Werte darf Null oder Negativ sein.
- Das arithmetische Mittel verwendet man, wenn die Stichproben von einander unabhängig sind, etwa wie die Noten bei einer Prüfung von den verschiedenen Schülern der Klasse.