NEW-Regel
Die NEW Regel stellt Zusammenhänge zwischen Nullstelle Extremstelle und Wendestelle für eine Funktion sowie deren Stammfunktion bzw. Ableitungsfunktion dar.
Hier findest du folgende Inhalte
Formeln
Grafisches Differenzieren
Beim grafischen Differenzieren leitet man Aussagen über den Verlauf einer Funktion aus dem Verlauf ihrer 1. und 2. Ableitung ab, bzw. umgekehrt
f hat Extremstelle (HP oder TP) | f' hat NST | |
f hat Wendepunkt | f' hat Extremstelle (HP oder TP) | f'' hat NST |
f hat Sattelpunkt | f' hat HP oder TP auf x-Achse | f'' hat NST |
f steigt streng monoton | f' liegt oberhalb der x-Achse bzw. f' > 0 | |
f sinkt streng monoton | f' liegt unterhalb der x-Achse bzw. f' < 0 | |
f ist linksgekrümmt, positiv gekrümmt bzw. konvex | f' ist steigend | f'' > 0 |
f ist rechtsgekrümmt, negativ gekrümmt bzw. konkav | f' ist fallend | f'' < 0 |
Merkhilfe: NEW-Regel
N = Nullstelle; E=Extremstelle (HP, TP); W=Wendestelle
F(x) | f(x) | N | E | W | ||
f(x) | f'(x) | N | E | W | ||
f'(x) | f''(x) | N | E | W |
Zusammenhänge zwischen der Funktion, ihrer ersten und ihrer zweiten Ableitung beim grafisches Differenzieren
Funktion f(x) | Ableitung f‘(x) | Ableitung f"(x) |
f hat eineExtremstelle |
f‘ hat eine Nullstelle | keine Aussage möglich |
f hat einen Wendepunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Extremwert: Hochpunkt | f" hat eine Nullstelle |
f hat einen Wendepunktund die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Extremwert: Tiefpunkt | f" hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Hochpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist | f‘‘ hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Tiefpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist |
f‘‘ hat eine Nullstelle |
f steigt streng monoton an d.h. k>0 | f‘ liegt oberhalb der x-Achse | |
f sinkt streng monoton d.h. k<0 | f‘ liegt unterhalb der x-Achse | |
f ist symmetrisch zur y-Achse d.h. f ist eine gerade Funktion |
f‘ ist punktsymmetrisch zum Ursprung d.h. f‘ ist eine ungerade Funktion | f‘‘ ist symmetrisch zur y-Achse, d.h. f‘‘ ist eine gerade Funktion |
f ist punktsymmetrisch zum Ursprung d.h. f ist eine ungerade Funktion | f‘ ist symmetrisch zur y-Achse d.h. f‘ ist eine gerade Funktion | f‘‘ ist punktsymmetrisch zum Ursprung d.h. f‘‘ ist eine ungerade Funktion |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung | |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung |
Zusammenhang zwischen höheren Ableitungen
Je mehr Ableitungen man von einer Funktion kennt, um so genauere Aussagen kann man über den Verlauf vom Graph der Funktion machen
\(f\left( {{x_0}} \right) = 0\) | ⇒ | f(x) hat eine Nullstelle an der Stelle x0 |
\(f'\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist streng monoton wachsend |
\(f'\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist streng monoton fallend |
\(f'\left( {{x_0}} \right) = 0\) | ⇒ | f(x0) hat eine waagrechte Tangente an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) hat Tiefpunkt / lokales Minimum an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) hat Hochpunkt / lokales Maximum an der Stelle x0 |
\(f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist links / positiv / konkav gekrümmt |
\(f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist rechts / negativ / konvex gekrümmt |
\(f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Wendepunkt (Graph ändert sein Krümmungsverhalten) an der Stelle x0; Der WP ist jener Punkt, an dem f(x) die stärkste Steigung hat. |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Sattelpunkt (=Wendepunkt mit waagrechter Tangente) an der Stelle x0 |
Graph mit Hochpunkt
Graph mit Tiefpunkt
Graph mit Wendepunkt
Graph mit Sattelpunkt
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1013
AHS - 1_013 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lokale Extrema
Von einer Polynomfunktion f dritten Grades sind die beiden lokalen Extrempunkte E1 = (0|–4) und E2 = (4|0) bekannt.
- Aussage 1: \(f\left( 0 \right) = - 4\)
- Aussage 2: \(f'\left( 0 \right) = 0\)
- Aussage 3: \(f\left( { - 4} \right) = 0\)
- Aussage 4: \(f'\left( 4 \right) = 0\)
- Aussage 5: \(f''\left( 0 \right) = 0\)
Aufgabenstellung:
Welche Bedingungen müssen in diesem Zusammenhang erfüllt sein? Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4180
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pelletsheizung - Aufgabe A_068
Teil b
Die Temperatur, auf die das Wasser eines Heizsystems erwärmt wird, bezeichnet man als Vorlauftemperatur. Bei einer Pelletsheizung ist die Vorlauftemperatur abhängig von der Außentemperatur. Den Graphen der zugehörigen Funktion V nennt man Heizkurve. In der nachstehenden Abbildung ist eine solche Heizkurve für Außentemperaturen von –15 °C bis 20 °C dargestellt.
- Aussage 1: \(V\left( x \right) > 0{\text{ und }}V'\left( x \right) > 0\)
- Aussage 2: \(V'\left( x \right) > 0{\text{ und }}V''\left( x \right) < 0\)
- Aussage 3: \(V\left( x \right) < 0{\text{ und }}V''\left( x \right) < 0\)
- Aussage 4: \(V'\left( x \right) < 0{\text{ und }}V''\left( x \right) < 0\)
- Aussage 5: \(V\left( x \right) < 0{\text{ und }}V''\left( x \right) > 0\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf die Funktion V im Intervall ]0; 20[ zutreffende Aussage an.
[1 aus 5] [1 Punkt]
Die Funktion V soll im Intervall [–15; 20] durch eine lineare Funktion ersetzt werden. Diese soll an den Randpunkten des Intervalls die gleichen Funktionswerte wie V haben.
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in der obigen Abbildung den Graphen dieser linearen Funktion ein.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie an, um wie viel Grad Celsius die Vorlauftemperatur bei einer Außentemperatur von 0 °C geringer ist, wenn anstelle der Funktion V die lineare Funktion verwendet wird.
[1 Punkt]
Aufgabe 1455
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 15. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften der Ableitungsfunktion einer Polynomfunktion 3. Grades
Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f dritten Grades. Die Koordinaten der hervorgehobenen Punkte des Graphen der Funktion sind ganzzahlig.
- Aussage 1: Die Funktionswerte der Funktion f′ sind im Intervall (0; 2) negativ.
- Aussage 2: Die Funktion f′ ist im Intervall (–1; 0) streng monoton steigend.
- Aussage 3: Die Funktion f′ hat an der Stelle x = 2 eine Wendestelle.
- Aussage 4: Die Funktion f′ hat an der Stelle x = 1 ein lokales Maximum.
- Aussage 5: Die Funktion f′ hat an der Stelle x = 0 eine Nullstelle.
Aufgabenstellung:
Welche der obigen Aussagen treffen auf die Ableitungsfunktion f‘ der Funktion f zu? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1405
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 17. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph einer Ableitungsfunktion
Die nachstehende Abbildung zeigt den Graphen der Ableitungsfunktion f ′ mit
\(f'\left( x \right) = \dfrac{1}{4} \cdot {x^2} - \dfrac{1}{2} \cdot x - 2\)
- Aussage 1: Die Funktion f hat im Intervall [–4; 5] zwei lokale Extremstellen.
- Aussage 2: Die Funktion f ist im Intervall [1; 2] monoton steigend.
- Aussage 3: Die Funktion f ist im Intervall [–4; –2] monoton fallend.
- Aussage 4: Die Funktion f ist im Intervall [–4; 0] linksgekrümmt (d. h. f''(x) > 0 für alle x ∈ [–4; 0]).
- Aussage 5: Die Funktion f hat an der Stelle x = 1 eine Wendestelle.
Aufgabenstellung:
Welche der folgenden Aussagen über die Funktion f sind richtig? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1033
AHS - 1_033 & Lehrstoff: AN 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktion - Ableitung
In der untenstehenden Abbildung ist der Graph der Ableitungsfunktion f' einer Funktion f dargestellt.
- Aussage 1: Jede Funktion f mit der Ableitungsfunktion f' hat an der Stelle x5 eine horizontale Tangente.
- Aussage 2: Es gibt eine Funktion f mit der Ableitungsfunktion f', deren Graph durch den Punkt P = (0|0) verläuft.
- Aussage 3: Jede Funktion f mit der Ableitungsfunktion f' ist im Intervall [x1; x2] streng monoton fallend.
- Aussage 4: Jede Funktion f mit der Ableitungsfunktion f' ist im Intervall [x3; x4] streng monoton steigend.
- Aussage 5: Die Funktionswerte f(x) jeder Funktion f mit der Ableitungsfunktion f' sind für x ∈ [x3; x5] stets positiv.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1077
AHS - 1_077 & Lehrstoff: AN 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph der ersten Ableitungsfunktion
Gegeben ist der Graph der Funktion f.
Zum Weiterlesen bitte aufklappen:
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
- Graph 5:
- Graph 6:
Aufgabenstellung:
Welche der obenstehenden Abbildungen beschreibt den Graphen der ersten Ableitungsfunktion der Funktion f ? Kreuzen Sie die zutreffende Abbildung an!
Aufgabe 1406
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 16. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zusammenhang zwischen Funktion und Ableitungsfunktion
In der folgenden Abbildung ist der Graph einer Polynomfunktion f dargestellt:
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Die erste Ableitung der Funktion f ist ___1___ , und daraus folgt: ___2___ .
1 | |
im Intervall [–1; 1] negativ | A |
im Intervall [–1; 1] gleich null | B |
im Intervall [–1; 1] positiv | C |
2 | |
f hat im Intervall [–1; 1] eine Nullstelle | I |
f ist im Intervall [–1; 1] streng monoton steigend | II |
f hat im Intervall [–1; 1] eine Wendestelle | III |
Aufgabe 1869
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 16. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungen
Gegeben ist der Graph der Polynomfunktion 3. Grades f. Die Koordinaten der eingezeichneten Punkte (Tiefpunkt T, Wendepunkt W und Hochpunkt H) sind ganzzahlig.
Unten stehend sind verschiedene Aussagen zur 1. bzw. 2. Ableitung von f gegeben.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an.
[2 aus 5]
[0 / 1 P.]
- Aussage 1: f‘(0) > 0
- Aussage 2: f‘‘(0) > 0
- Aussage 3: f‘(1) > 0
- Aussage 4: f‘(2) > 0
- Aussage 5: f‘‘(2) > 0
Aufgabe 4085
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Smartphones - Aufgabe B_079
Teil c
Die Entwicklung der weltweiten Verkaufszahlen von Smartphones kann modellhaft durch die Funktion S beschrieben werden:
\(S\left( t \right) = \dfrac{{1918}}{{1 + 4,84 \cdot {e^{ - 0,54 \cdot t}}}}\)
- t ... Zeit in Jahren (t = 0 entspricht dem Beginn des Jahres 2010)
- S(t) ... Anzahl der bis zur Zeit t insgesamt verkauften Smartphones in Millionen Stück
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe dieses Modells die Anzahl der bis zum Beginn des Jahres 2020 insgesamt verkauften Smartphones.
[1 Punkt]
Im nachstehenden Diagramm ist der Graph der Ableitungsfunktion S′ dargestellt. Auf dem Graphen von S′ ist der Hochpunkt H markiert.
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie die mathematische Bedeutung der Stelle t = 2,9 in Bezug auf die Funktion S. [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4184
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewitter - Aufgabe A_071
Teil c
Während eines Nachmittags, an dem es ein Gewitter gab, wurde die Veränderung der Temperatur ermittelt. Die Funktion T′ beschreibt die momentane Änderungsrate der Temperatur in Abhängigkeit von der Zeit t (siehe nachstehende Abbildung).
- t … Zeit seit Beginn der Messung in h
- T′(t) … momentane Änderungsrate der Temperatur zur Zeit t in °C/h
- Die Funktion T′ hat an der Stelle t0 eine Nullstelle (siehe obige Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Aussage an.
- Aussage 1: Jede Stammfunktion von T′ hat an der Stelle t0 eine Maximumstelle.
- Aussage 2: Jede Stammfunktion von T′ hat an der Stelle t0 eine Minimumstelle.
- Aussage 3: Jede Stammfunktion von T′ hat an der Stelle t0 eine Nullstelle.
- Aussage 4: Jede Stammfunktion von T′ hat an der Stelle t0 eine Wendestelle.
- Aussage 5: Jede Stammfunktion von T′ hat an der Stelle t0 eine positive Steigung.
[1 aus 5] [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Die absolute Temperaturänderung in einem Zeitintervall [t1; t2] kann durch das Integral \(\int\limits_{{t_1}}^{{t_2}} {T'\left( t \right)} \,\,dt\) berechnet werden. Bestimmen Sie mithilfe der obigen Abbildung näherungsweise die absolute Temperaturänderung im Zeitintervall [1,25; 1,5].
[1 Punkt]
Aufgabe 4418
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil a
Die Kosten bei der Produktion des Fruchtsafts Mangomix können durch eine ertragsgesetzliche Kostenfunktion K beschrieben werden:
\(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + 105 \cdot x + 1215\)
x | Produktionsmenge in hl |
K(x) | Kosten bei der Produktionsmenge x in € |
Von der Kostenfunktion ist bekannt:
- I: Die Grenzkosten bei einer Produktionsmenge von 25 hl betragen 30 €/hl.
- II: K″(25) = 0
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung, die die Bedingung I beschreibt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung der Zahl 25 in der Gleichung II im gegebenen Sachzusammenhang.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Koeffizienten a und b.
[1 Punkt]
Aufgabe 6039
Abitur 2016 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist eine in \({\Bbb R}\) definierte ganzrationale Funktion f dritten Grades, deren Graph Gf an der Stelle x=1 einen Hochpunkt und an der Stelle x=4 einen Tiefpunkt besitzt.
1. Teilaufgabe a1) 3 BE - Bearbeitungszeit: 7:00
Begründen Sie, dass der Graph der Ableitungsfunktion f‘ von f eine Parabel ist, welche die x-Achse in den Punkten \(\left( {1\left| 0 \right.} \right){\text{ und }}\left( {4\left| 0 \right.} \right)\) schneidet und nach oben geöffnet ist.
2. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass 2,5 die x-Koordinate des Wendepunkts von Gf ist.