Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Analysis
  3. Differentialrechnung
  4. Differentialgleichungen

Differentialgleichungen

Hier findest du folgende Inhalte

2
Formeln
    Formeln
    Wissenspfad
    Aufgaben

    Gewöhnliche Differentialgleichungen

    Bei Differentialgleichungen unterscheidet man zwischen gewöhnlichen Differentialgleichungen und partiellen Differentialgleichungen. Von gewöhnlichen Differentialgleichungen spricht man, wenn die gesuchte Funktion \(y = y\left( x \right)\) von einer Variablen abhängt, die in der Funktionsgleichung der unbekannten Funktion bis zur n-ten Ordnung vorkommt. Die Funktion y=y(x) ist dann eine Lösung der Differentialgleichung, wenn y=y(x) und ihre Ableitungen die Differentialgleichung identisch erfüllen.

    \(F\left( {x,y,y'} \right) = 0\) Gewöhnliche Differentialgleichung 1-ter Ordnung
    \(F\left( {x;\,\,\,y;\,\,\,y';\,\,\,...\,\,\,;{y^{\left( n \right)}}} \right)=0\) Gewöhnliche Differentialgleichung n-ter Ordnung

    Lösungen einer gewöhnlichen Differentialgleichung

    • Die allgemeine Lösung einer gewöhnlichen Differentialgleichung n-ter Ordnung enthält n voneinander unabhängige Parameter, deren Ursprung Integrationskonstanten sind
    • Die partikuläre oder spezielle Lösung wird aus der allgemeinen Lösung durch die Anwendung zusätzlicher Bedingungen (Anfangsbedingung, Randwertbedingung) gewonnen , wobei man den n Parametern feste Werte zuweist.

    Allgemeine Differentialgleichung 1. Ordnung

    In einer allgemeinen Differentialgleichung 1. Ordnung kommen y und y‘ vor, sowie die beiden beliebigen Funktionen a(x) und b(x)

    \(y' + a\left( x \right) \cdot y = b\left( x \right)\)

    • Beispiel einer expliziten DGL 1. Ordnung

      • \(y' = \sin \left( x \right)\)
    • Beispiel einer impliziten DGL 1. Ordnung:
      • \(x - yy' = 0\)
      • \(\mathop { s }\limits^{ \cdot \cdot } =-g\)

    Differentialgleichung 1. Ordnung mit konstanten Koeffizienten

    Es handelt sich dabei um den Spezialfall einer allgemeinen Differentialgleichung 1. Ordnung, also um eine lineare Differentialgleichung, bei der a(x)=x, also ein konstanter Koeffizient ist.

    \(\eqalign{ & y' + a \cdot y = s\left( x \right){\text{ mit }}a \in {\Bbb R},{\text{ }}y = y\left( x \right) \cr & y = {y_h} + {y_p} \cr} \)

    y allgemeine Lösung der inhomogenen Differentialgleichung
    yh allgemeine Lösung der homogenen Differentialgleichung, für s(x)=0
    yp partikuläre (=spezielle) Lösung der inhomogenen Differentialgleichung
    s(x) Störfunktion

    Differentialgleichung 1. Ordnung mit trennbaren Variablen

    Es handelt sich dabei um den Spezialfall einer allgemeinen Differentialgleichung 1. Ordnung, also um eine lineare Differentialgleichung, bei der man die Variablen "y" auf der einen Seite und die Variablen „x“ auf der anderen Seite einer Differentialgleichung anschreiben kann. Man spricht auch von einer separablen Differentialgleichung.

    \(\eqalign{ & y' = \dfrac{{dy}}{{\operatorname{dx} }} = f\left( x \right) \cdot g\left( y \right) \cr & \dfrac{{dy}}{{g\left( y \right)}} = f\left( x \right)\,\,dx \cr & \int {\dfrac{{dy}}{{g\left( y \right)}}} = \int {f\left( x \right)\,\,dx} + C \cr} \)

    Vorgehen zur Lösung von Differentialgleichung 1. Ordnung vom Typ \(y' = f\left( x \right) \cdot g\left( y \right)\)

    • 1. Lösungsschritt: Trennen der beiden Variablen: \(\dfrac{{dy}}{{g\left( y \right)}} = f\left( x \right)\,\,dx\)
    • 2. Lösungsschritt: Integrieren von beiden Seiten der Gleichung: \(\int {\dfrac{{dy}}{{g\left( y \right)}}} = \int {f\left( x \right)\,\,dx} + C\)
    • 3. Lösungsschritt: Man versucht - was nicht immer möglich ist - die Auflösung der nunmehr vorliegenden impliziten Gleichung vom Typ \(G\left( y \right) = F\left( x \right)\) nach der Variablen „y“.
    Gewöhnliche Differentialgleichung
    Differentialgleichung 1. Ordnung mit konstanten Koeffizienten
    Differentialgleichung 1. Ordnung mit trennbaren Variablen
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Wissenspfad
    Aufgaben

    Partielle Differentialgleichungen

    Bei Differentialgleichungen unterscheidet man zwischen gewöhnlichen Differentialgleichungen und partiellen Differentialgleichungen. Von partiellen Differentialgleichungen spricht man, wenn die gesuchte Funktion \(y = y\left( x \right)\) von mehreren Variablen abhängt und in der Funktionsgleichung Ableitungen der unbekannten Funktion bis zur n-ten Ordnung vorkommen.

    Funktionen, die von mehr als einer unabhängigen Variablen abhängen, beschreiben bei zwei unabhängigen Variablen Flächen im Raum. Derartige Funktionen kann man differenzieren, indem man jeweils nach einer der unabhängigen Variablen ableitet und dabei alle anderen unabhängigen Variablen wie Konstante behandelt.

    Partielle Ableitungen benötigt man zur Bestimmung von Extremwerten im Raum, zur Aufstellung von Taylorreihen und wenn man mit impliziten Funktionen arbeiten muss.

    \(z = f\left( {x;y} \right)\)


    1. Ableitung nach x:
    \({z_x} = \dfrac{\partial }{{\partial x}}f\left( {x;y} \right)\)


    1. Ableitung nach y:
    \({z_y} = \dfrac{\partial }{{\partial y}}f\left( {x;y} \right)\)

    Partielle Ableitungen
    Funktion mit 2 unabhängigen Variablen differenzieren
    Partielle Differntialgleichungen
    Partielles Differenzieren
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Laptop
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH