Integralrechnung
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4032
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leistungsdiagnostik im Sport - Aufgabe B_417
Teil c
Bei einem bestimmten Sportler wird die Herzschlagfrequenz in Abhängigkeit von der Laufgeschwindigkeit bestimmt:
Laufgeschwindigkeit in km/h | 11,0 | 11,5 | 12,0 | 12,5 | 13,0 | 13,5 | 14,0 | 14,5 |
Herzschlagfrequenz in min-1 | 140 | 150 | 162 | 168 | 175 | 182 | 190 | 200 |
Die Herzschlagfrequenz in Abhängigkeit von der Laufgeschwindigkeit soll mithilfe einer linearen Ausgleichsfunktion beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie eine Gleichung dieser linearen Ausgleichsfunktion.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4205
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kontrolle der Geschwindigkeit - Aufgabe A_117
Teil c
Der nachstehend dargestellte Graph zeigt annähernd den Geschwindigkeitsverlauf eines im Stadtgebiet fahrenden Autos.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie näherungsweise die Länge des im Zeitintervall [0; 45] zurückgelegten Weges.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie die Höchstgeschwindigkeit des Autos ab. Geben Sie das Ergebnis in km/h an.
[1 Punkt]
Aufgabe 4234
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. Jänner 2018 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Genfer See - Aufgabe A_222
Teil b
Der Genfer See wird durch mehrere Flüsse gespeist. Der Wasserstand des Sees wird beim Abfluss reguliert. Die nachstehende Grafik zeigt den Verlauf der Durchflussrate des Wassers beim Abfluss innerhalb von 48 Stunden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie unter Angabe der entsprechenden Einheit, was mit dem Ausdruck \(\int\limits_0^{48} {f\left( t \right)} \,\,dt\) im gegebenen Sachzusammenhang berechnet wird.
[1 Punkt]
Die Funktion F ist eine Stammfunktion der in der obigen Grafik dargestellten Funktion f.
2. Teilaufgabe - Bearbeitungszeit 5:40
- Aussage 1: F hat die Stelle mit dem größten Anstieg im Intervall [14; 18].
- Aussage 2: F hat eine Maximumstelle im Intervall [26; 30].
- Aussage 3: F ist monoton fallend im Intervall [32; 44].
- Aussage 4: F ist monoton steigend im Intervall [4; 26].
- Aussage 5: F ist im Intervall [0; 16] positiv gekrümmt (linksgekrümmt).
[1 Punkt]
Aufgabe 4082
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flussläufe und Pegelstände -Aufgabe A_266
Teil b
Auf einem annähernd geradlinig verlaufenden Abschnitt eines Flusses soll das Flussbett verbreitert und vertieft werden. In der nachstehenden Abbildung ist das Flussbett im Querschnitt dargestellt.
mit
f | Profillinie des ursprünglichen Flussbetts |
h | Profillinie des neuen Flussbetts |
f und h sind Polynomfunktionen 2. Grades mit zur y-Achse symmetrischen Graphen.
Ein Teilstuck des Flussbetts mit der Lange L (in m) wird ausgebaggert.
1. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie unter Angabe der entsprechenden Einheit, was mit dem folgenden Ausdruck im gegebenen Sachzusammenhang berechnet wird:
\(2 \cdot \left| {\int\limits_0^{17,5} {h\left( x \right)\,\,dx - \int\limits_0^{15} {f\left( x \right)\,\,dx} } } \right| \cdot L\)
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe der obigen Abbildung eine Gleichung der Funktion h.
[1 Punkt]
Aufgabe 4209
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fressverhalten von Furchenwalen - Aufgabe A_288
Teil a
Bei einem Beutestoß nehmen Furchenwale mit weit geöffnetem Maul eine große Menge Meerwasser und die darin enthaltene Beute auf. Forscher/innen beobachteten dieses Fressverhalten. Sie ermittelten mithilfe von Sensoren die Geschwindigkeit des Furchenwals bei einem Beutestoß, die Größe der Maulöffnung und das gesamte Wasservolumen, das dabei aufgenommen wird.
Die Geschwindigkeit eines Furchenwals bei einem Beutestoß, der insgesamt 20 s dauert, kann näherungsweise durch die Funktion v beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Schätzen Sie die Länge s desjenigen Weges ab, der bei diesem Beutestoß zurückgelegt wird.
[1 Punkt]
Ein Forscher behauptet: „Der Furchenwal erreicht bei diesem Beutestoß eine maximale Geschwindigkeit von 15 km/h.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass diese Behauptung falsch ist.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4201
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baumhaus - Aufgabe A_116
Teil b
Die Fenster des Baumhauses sollen eine spezielle Form haben (siehe grau markierte Flache in der nachstehenden Abbildung).
Die obere Begrenzungslinie des Fensters kann näherungsweise durch den Graphen der Funktion f beschrieben werden.
\(f\left( x \right) = - 0,003 \cdot {x^3} + 0,164 \cdot {x^2} - 2,25 \cdot x + 40{\text{ mit }}0 \leqslant x \leqslant 40\)
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie, um wie viel Prozent die Fensterfläche in der dargestellten Form kleiner als die Fensterfläche eines quadratischen Fensters mit der Seitenlange 40 cm ist.
[2 Punkte]
Aufgabe 4015
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Bodensee - Aufgabe A_243
Teil c
Sabine und Johanna fahren mit ihren Fahrrädern auf einem Radweg in Richtung Ludwigshafen (siehe nachstehende Skizze). Sabine startet im 12 Kilometer von Bregenz entfernten Lindau und fährt mit einer konstanten Geschwindigkeit von 15 km/h. Johanna startet mit einem E-Bike eine Stunde später in Bregenz und fährt mit einer konstanten Geschwindigkeit von 30 km/h.
Sabines Entfernung von Bregenz kann näherungsweise durch die lineare Funktion S beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie im obigen Diagramm den Graphen der linearen Funktion J ein, der Johannas Entfernung von Bregenz darstellt.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie ab, wie lange Johanna unterwegs ist, bis sie Sabine einholt.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Auch Otto fährt auf diesem Radweg von Bregenz in Richtung Ludwigshafen. Seine Geschwindigkeit kann durch eine Funktion v beschrieben werden.
t | Zeit in h |
v(t) | Geschwindigkeit zur Zeit t in km/h |
Beschreiben Sie unter Angabe der entsprechenden Einheit, was mit \(\int\limits_0^2 {v\left( t \right)} \,\,dt\) im gegebenen Sachzusammenhang berechnet wird.
[1 Punkt]
Aufgabe 4184
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewitter - Aufgabe A_071
Teil c
Während eines Nachmittags, an dem es ein Gewitter gab, wurde die Veränderung der Temperatur ermittelt. Die Funktion T′ beschreibt die momentane Änderungsrate der Temperatur in Abhängigkeit von der Zeit t (siehe nachstehende Abbildung).
- t … Zeit seit Beginn der Messung in h
- T′(t) … momentane Änderungsrate der Temperatur zur Zeit t in °C/h
- Die Funktion T′ hat an der Stelle t0 eine Nullstelle (siehe obige Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Aussage an.
- Aussage 1: Jede Stammfunktion von T′ hat an der Stelle t0 eine Maximumstelle.
- Aussage 2: Jede Stammfunktion von T′ hat an der Stelle t0 eine Minimumstelle.
- Aussage 3: Jede Stammfunktion von T′ hat an der Stelle t0 eine Nullstelle.
- Aussage 4: Jede Stammfunktion von T′ hat an der Stelle t0 eine Wendestelle.
- Aussage 5: Jede Stammfunktion von T′ hat an der Stelle t0 eine positive Steigung.
[1 aus 5] [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Die absolute Temperaturänderung in einem Zeitintervall [t1; t2] kann durch das Integral \(\int\limits_{{t_1}}^{{t_2}} {T'\left( t \right)} \,\,dt\) berechnet werden. Bestimmen Sie mithilfe der obigen Abbildung näherungsweise die absolute Temperaturänderung im Zeitintervall [1,25; 1,5].
[1 Punkt]
Aufgabe 4240
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kühe auf der Weide - Aufgabe A_141
Teil a
In der nachstehenden Abbildung ist eine Weide modellhaft dargestellt. Die obere Begrenzungslinie kann mithilfe einer Funktion f beschrieben werden. Die anderen drei Begrenzungslinien verlaufen geradlinig.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe von f eine Formel zur Berechnung des Flächeninhalts A dieser Weide.
A =
[1 Punkt]
Für die Funktion f gilt:
\(f\left( x \right) = a \cdot {x^2} + b \cdot x + 52\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie unter Verwendung der in der obigen Abbildung angegebenen Koordinaten ein Gleichungssystem zur Berechnung der Koeffizienten a und b.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4241
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kühe auf der Weide - Aufgabe A_141
Teil b
Um zu ermitteln, wie viele Kühe auf einer Weide gehalten werden können, ist der Zuwachs der Trockenmasse von Gras auf dieser Weide von Bedeutung. Für eine bestimmte Weide wurde auf Basis mehrjähriger Messungen der nachstehend dargestellte Graph erstellt.
1 Hektar (ha) = 10 000 m2
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht.
[Lückentext]
[1 Punkt]
Im Zeitintervall [0; 240] liefert diese Weide rund ____1____ ____ 2_____ Trockenmasse von Gras.
- Lücke 1_1: 90
- Lücke 1_2: 900
- Lücke 1_3: 9000
- Lücke 2_1: \(\dfrac{{{\rm{kg}}}}{{{{\rm{m}}^{\rm{2}}}}}\)
- Lücke 2_2: \(\dfrac{{{\rm{kg}}}}{{{\rm{ha}}}}\)
- Lücke 2_3: \(\dfrac{{\rm{t}}}{{{\rm{ha}}}}\)
Aufgabe 4243
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winterliche Fahrbahnverhältnisse im Straßenverkehr - Aufgabe A_143
Teil a
Die Bremswege eines PKW auf schneebedeckter sowie auf trockener Fahrbahn werden miteinander verglichen. Das nachstehende Geschwindigkeit-Zeit-Diagramm zeigt modellhaft den zeitlichen Verlauf der Geschwindigkeit vS auf schneebedeckter Fahrbahn sowie den zeitlichen Verlauf der Geschwindigkeit vT auf trockener Fahrbahn vom Reagieren der Bremse bis zum Stillstand des PKW.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe des obigen Diagramms die (negative) Beschleunigung auf schneebedeckter Fahrbahn.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Der Bremsweg ist diejenige Strecke, die der PKW vom Reagieren der Bremse (t = 0) bis zum Stillstand zurücklegt. Veranschaulichen Sie im obigen Diagramm den Bremsweg auf trockener Fahrbahn.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe des obigen Diagramms die Differenz zwischen dem Bremsweg auf schneebedeckter Fahrbahn und dem Bremsweg auf trockener Fahrbahn.
[1 Punkt]
Aufgabe 4259
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Torre de Collserola - Aufgabe A_296
Teil c
Vom Fußpunkt des Torre de Collserola (Fernsehturm in Barcelona) bis zu dessen Aussichtsplattform führt ein Aufzug senkrecht nach oben. In der nachstehenden Abbildung ist die Geschwindigkeit-Zeit-Funktion v bei einer Aufzugsfahrt modellhaft dargestellt.
Im Zeitintervall [0; 30] gilt für die Geschwindigkeit-Zeit-Funktion v:
\(v\left( t \right) = - \dfrac{1}{{11250}} \cdot {t^3} + \dfrac{1}{{250}} \cdot {t^2}{\rm{ mit }}0 \le t \le 30\)
1. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie die Länge des Weges, der bei dieser Aufzugsfahrt insgesamt zurückgelegt wird.
[2 Punkte]