Winkelfunktionen integrieren
Winkelfunktionen, sie werden auch trigonometrische Funktionen genannt, bezeichnen Zusammenhänge zwischen einem Winkel und Verhältnissen von Seiten (wie der Ankathete und der Gegenkathete) im rechtwinkeligen Dreieck. Ihrer Stammfunktionen sind Teil der Standardintegraltabellen
Sinus integrieren
Das Integral der Sinusfunktion ist die negative Kosinusfunktion plus der Integrationskonstante
\(\eqalign{ & f\left( x \right) = \sin x \cr & F\left( x \right) = \int {\sin x} \,\,dx = - \cos x + C \cr}\)
Kosinus integrieren
Das Integral der Kosinusfunktion ist die Sinusfunktion plus der Integrationskonstante
\(\eqalign{ & f\left( x \right) = \cos x \cr & F\left( x \right) = \int {\cos x} \,\,dx = \sin x + C \cr} \)
Illustration als Merkhilfe für die Vorzeichen beim Differenzieren bzw. Integrieren von Sinus und Kosinus
Tangens integrieren
Das Integral der Tangensfunktion ist der negative Logarithmus vom Betrag der Kosinusfunktion plus der Integrationskonstante
\(\eqalign{ & f\left( x \right) = \tan x \cr & F\left( x \right) = \int {\tan x} \,\,dx = - \ln \left| {cosx} \right| + C \cr} \)
Kotanges integrieren
Das Integral der Kotangensfunktion ist der positive Logarithmus vom Betrag der Sinusfunktion plus der Integrationskonstante
\(\eqalign{ & f\left( x \right) = \cot x \cr & F\left( x \right) = \int {\cot x} \,\,dx = \ln \left| {\sin x} \right| + C \cr} \)