Typ 1 - Funktionale Abhängigkeiten
Hier findest du folgende Inhalte
Formeln
AT Matura AHS Inhaltsbereich Funktionale Abhängigkeiten
Wesentliches Ziel der standardisierten kompetenzorientierten Reifeprüfung in Mathematik ist die Sicherung mathematischer Grundkompetenzen an Österreichs AHS. Mathematische Grundkompetenzen beschreiben einen Kernbereich, der aufgrund fachlicher und gesellschaftlicher Relevanz als grundlegend und unverzichtbar gilt. Typ-1-Aufgaben sind Aufgaben, die auf die im Katalog angeführten Grundkompetenzen fokussieren. Bei diesen Aufgabenstellungen sind kompetenzorientiert (Grund-)Wissen und (Grund-)Fertigkeiten ohne darüber hinausgehende Eigenständigkeit nachzuweisen.
Funktionale Abhängigkeiten
Wenn Expertinnen und Experten Mathematik verwenden, bedienen sie sich oftmals des Werkzeugs der Funktionen. Das meint die Aufmerksamkeit auf die Beziehung zwischen zwei (oder mehreren) Größen in unterschiedlichen Kontexten fokussieren zu können sowie die gängigen Darstellungsformen zu kennen und mit ihnen flexibel umgehen zu können. Im Zentrum des mathematischen Grundwissens steht dann das Kennen der für die Anwendungen wichtigsten Funktionstypen: Namen und Gleichungen kennen, typische Verläufe von Graphen (er)kennen, zwischen den Darstellungsformen wechseln, charakteristische Eigenschaften wissen und im Kontext deuten (können).
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.1
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.1: Für gegebene Zusammenhänge entscheiden können, ob man sie als Funktionen betrachten kann
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.2
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.2: Formeln als Darstellung von Funktionen interpretieren und dem Funktionstyp zuordnen können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.3
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.3: Zwischen tabellarischen und grafischen Darstellungen funktionaler Zusammenhänge wechseln können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.4
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.4: Aus Tabellen, Graphen und Gleichungen von Funktionen Werte(paare) ermitteln und im Kontext deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.5
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.5: Eigenschaften von Funktionen erkennen, benennen, im Kontext deuten und zum Erstellen von Funktionsgraphen einsetzen können: Monotonie, Monotoniewechsel (lokale Extrema), Wendepunkte, Periodizität, Achsensymmetrie, asymptotisches Verhalten, Schnittpunkte mit den Achsen
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.6
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.6: Schnittpunkte zweier Funktionsgraphen grafisch und rechnerisch ermitteln und im Kontext interpretieren können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.7
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.7: Funktionen als mathematische Modelle verstehen und damit verständig arbeiten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.8
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.8: Durch Gleichungen (Formeln) gegebene Funktionen mit mehreren Veränderlichen im Kontext deuten können, Funktionswerte ermitteln können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.9
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.9: Einen Überblick über die wichtigsten Typen mathematischer Funktionen geben, ihre Eigenschaften vergleichen können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 2.1
Lineare Funktion
\(f\left( x \right) = k \cdot x + d\)
FA 2.1: Verbal, tabellarisch, grafisch oder durch eine Gleichung (Formel) gegebene lineare Zusammenhänge als lineare Funktionen erkennen bzw. betrachten können; zwischen diesen Darstellungsformen wechseln können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 2.2
Lineare Funktion
\(f\left( x \right) = k \cdot x + d\)
FA 2.2: Aus Tabellen, Graphen und Gleichungen linearer Funktionen Werte(paare) sowie die Parameter k und d ermitteln und im Kontext deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Aufgaben
Aufgabe 1621
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Radfahrer
Zwei Radfahrer A und B fahren mit Elektrofahrrädern vom gleichen Startpunkt aus mit jeweils konstanter Geschwindigkeit auf einer geradlinigen Straße in dieselbe Richtung. In der nachstehenden Abbildung sind die Graphen der Funktionen sA und sB dargestellt, die den von den Radfahrern zurückgelegten Weg in Abhängigkeit von der Fahrzeit beschreiben. Die markierten Punkte haben die Koordinaten (0 | 0), (2 | 0) bzw. (8 | 2 400).
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die der obigen Abbildung entnommen werden können!
- Aussage 1: Der Radfahrer B startet zwei Minuten später als der Radfahrer A.
- Aussage 2: Die Geschwindigkeit des Radfahrers A betragt 200 Meter pro Minute.
- Aussage 3: Der Radfahrer B holt den Radfahrer A nach einer Fahrstrecke von 2,4 Kilometern ein.
- Aussage 4: Acht Minuten nach dem Start von Radfahrer B sind die beiden Radfahrer gleich weit vom Startpunkt entfernt.
- Aussage 5: Vier Minuten nach der Abfahrt des Radfahrers A sind die beiden Radfahrer 200 Meter voneinander entfernt.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1484
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Potenzfunktionen
Gegeben sind die Graphen von vier verschiedenen Potenzfunktionen f mit \(f\left( x \right) = a \cdot {x^z}\) sowie sechs Bedingungen für den Parameter a und den Exponenten z. Dabei ist a eine reelle, z eine natürliche Zahl.
Aussage A | \(a > 0,\,\,z = 1\) |
Aussage B | \(a > 0,\,\,z = 2\) |
Aussage C | \(a > 0,\,\,z = 3\) |
Aussage D | \(a < 0,\,\,z = 1\) |
Aussage E | \(a < 0,\,\,z = 2\) |
Aussage F | \(a < 0,\,\,z = 3\) |
Aufgabenstellung:
Ordnen Sie den vier Graphen 1..4 jeweils die entsprechende Aussage (aus A bis F) für den Parameter a und den Exponenten z der Funktionsgleichung zu!
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabe 1435
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentialfunktion
Gegeben ist der Graph einer Exponentialfunktion f mit \(f\left( x \right) = a \cdot {b^x}\) mit \(a,\,\,b \in {R^ + }\) durch die Punkte \(P = \left( {0\left| {25} \right.} \right)\)und \(Q = \left( {1\left| {20} \right.} \right)\)
Aufgabenstellung:
Geben Sie eine Funktionsgleichung der dargestellten Exponentialfunktion f an!
Aufgabe 1281
AHS - 1_281 & Lehrstoff: FA 6.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen von Winkelfunktionen
Die nachstehende Abbildung zeigt die Graphen der Funktionen f1, f2, f3 und f4.
A | \(\sin \left( {2x} \right)\) |
B | \(- 2 \cdot \sin \left( x \right)\) |
C | \(\dfrac{1}{2} \cdot \sin \left( x \right)\) |
D | \(\cos \left( x \right)\) |
E | \(\cos \left( {\dfrac{x}{2}} \right)\) |
F | \(3 \cdot \cos \left( x \right)\) |
Aufgabenstellung:
Ordnen Sie den vier dargestellten Funktionsgraphen jeweils die passende Funktionsgleichung (aus A bis F) zu!
Deine Antwort | |
f1 | |
f2 | |
f3 | |
f4 |
Aufgabe 1283
AHS - 1_283 & Lehrstoff: FA 6.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Atemzyklus
Der Luftstrom beim Ein- und Ausatmen einer Person im Ruhezustand ändert sich in Abhängigkeit von der Zeit nach einer Funktion f. Zum Zeitpunkt t = 0 beginnt ein Atemzyklus. f ( t) ist die bewegte Luftmenge in Litern pro Sekunde zum Zeitpunkt t in Sekunden und wird durch die Gleichung \(f\left( t \right) = 0,5 \cdot \sin \left( {0,4 \cdot \pi \cdot t} \right)\) festgelegt.
(Datenquelle: Timischl, W. (1995). Biomathematik: Eine Einführung für Biologen und Mediziner. 2. Auflage. Wien u. a.: Springer.)
Aufgabenstellung
Berechnen Sie die Dauer eines gesamten Atemzyklus!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1301
AHS - 1_301 & Lehrstoff: FA 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratisches Prisma
Das Volumen V eines geraden quadratischen Prismas hängt von der Seitenlänge a der quadratischen Grundfläche und von der Höhe h ab. Es wird durch die Formel \(V = {a^2} \cdot h\) beschrieben.
Aufgabenstellung:
Stellen Sie die Abhängigkeit des Volumens V(a) in cm³ eines geraden quadratischen Prismas von der Seitenlänge a in cm bei konstanter Höhe h = 5 cm durch einen entsprechenden Funktionsgraphen im Intervall [0; 4] dar!
Aufgabe 1413
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Den Graphen einer Polynomfunktion skizzieren
Eine Polynomfunktion f hat folgende Eigenschaften:
- Die Funktion ist für x ≤ 0 streng monoton steigend.
- Die Funktion ist im Intervall [0; 3] streng monoton fallend.
- Die Funktion ist für x ≥ 3 streng monoton steigend.
- Der Punkt P = (0|1) ist ein lokales Maximum (Hochpunkt).
- Die Stelle 3 ist eine Nullstelle.
Aufgabenstellung:
Erstellen Sie anhand der gegebenen Eigenschaften eine Skizze eines möglichen Funktionsgraphen von f im Intervall [–2; 4]!
Aufgabe 1131
AHS - 1_131 & Lehrstoff: FA 2.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften linearer Funktionen
Gegeben ist eine lineare Funktion f mit der Gleichung \(f\left( x \right) = 4x - 2\)
Aufgabenstellung
Wählen Sie zwei Argumente x1 und x2 mit x2 = x1 + 1 und zeigen Sie, dass die Differenz f(x2) – f(x1) gleich dem Wert der Steigung k der gegebenen linearen Funktion f ist!
Aufgabe 1339
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentialfunktion
Eine reelle Funktion f mit der Gleichung \(f\left( x \right) = c \cdot {a^x}\) ist eine Exponentialfunktion, für deren reelle Parameter c und a gilt: c ≠ 0, a > 1.
- Aussage 1: \(f\left( {k \cdot x} \right) = k \cdot f\left( x \right)\)
- Aussage 2: \(\dfrac{{f\left( {x + h} \right)}}{{f\left( x \right)}} = {a^h}\)
- Aussage 3: \(f\left( {x + 1} \right) = a \cdot f\left( x \right)\)
- Aussage 4: \(f\left( 0 \right) = 0\)
- Aussage 5: \(f\left( {x + h} \right) = f\left( x \right) + f\left( h \right)\)
Aufgabenstellung:
Kreuzen Sie jene beiden Aussagen an, die auf diese Exponentialfunktion f und alle Werte k, h ∈ ℝ, k > 1 zutreffen!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1338
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Im untenstehenden Diagramm sind die Graphen zweier Funktionen f und g dargestellt.
Die Funktion f hat die Funktionsgleichung \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) mit den reellen Parametern a und b. Wenn diese Parameter in entsprechender Weise verändert werden, erhält man die Funktion g.
Aufgabenstellung:
Wie müssen die Parameter a und b verändert werden, um aus f die Funktion g zu erhalten? Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Um den Graphen von g zu erhalten, muss a ___1___ und b ___2___ .
1 | |
verdoppelt werden | A |
halbiert werden | B |
gleich bleiben | C |
2 | |
verdoppelt werden | I |
halbiert werden | II |
gleich bleiben | III |
Aufgabe 1119
AHS - 1_119 & Lehrstoff: FA 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer linearen Funktion
Der Verlauf einer linearen Funktion f mit der Gleichung \(f\left( x \right) = k \cdot x + d\) wird durch ihre Parameter k und d mitbestimmt.
Aufgabenstellung:
Zeichnen Sie den Graphen einer linearen Funktion \(f\left( x \right) = k \cdot x + d\) für deren Parameter k und d die Bedingungen \(k = \dfrac{2}{3};\,\,\,d < 0\) gelten, in das Koordinatensystem ein!
Aufgabe 1241
AHS - 1_241 & Lehrstoff: FA 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Formel als Darstellung einer Funktion
Gegeben ist die Formel \(r = \dfrac{{2{s^2}t}}{u}\) für s, t, u > 0
- Aussage 1: lineare Funktion
- Aussage 2: konstante Funktion
- Aussage 3: quadratische Funktion
- Aussage 4: Wurzelfunktion
- Aussage 5: gebrochen rationale Funktion
- Aussage 6: Exponentialfunktion
Aufgabenstellung
Wenn u und t konstant sind, dann kann r als eine Funktion in Abhängigkeit von s betrachtet werden. Welchem Funktionstyp ist dann r zuzuordnen? Kreuzen Sie den zutreffenden Funktionstyp an!