Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Funktionswerte

Funktionswerte

Hier findest du folgende Inhalte

1
Formeln
8
Aufgaben
    Formeln
    Wissenspfad
    Aufgaben

    Darstellung von Funktionen

    Unter einer Funktion versteht man die eindeutige Zuordnung von jedem Element x der Definitionsmenge zu genau einem Element y der Wertemenge. Unter einer reellen Funktion versteht man die Abbildung von reellen Zahlen der Definitionsmenge auf reelle Zahlen der Wertemenge.

    \(f:{D_f} \to {W_f}\,\,\,{\text{mit}}\,\,\,x \in {D_f}\,\,\,{\text{und}}\,\,\,y \in {W_f}\)

    Es gibt mehrere gängige Schreibweisen für Funktionsgleichungen
    \(f:x \to 2{x^3}\)
    \(f\left( x \right) = 2{x^3}\)
    \(y = 2{x^3}\)


    Funktionsgleichung

    Unter einer Funktionsgleichung versteht man eine mathematische Vorschrift, die angibt, wie man aus einem gegebenen x-Wert den zugehörigen y-Wert errechnet. Dabei ist y abhängig davon, welchen Wert x man in die Funktionsgleichung einsetzt. Die Funktionsgleichung stellt die Abbildung der Werte aus der Definitionsmenge Df auf die Wertemenge Wf in Form einer Gleichung dar.

    \(f:{\Bbb R} \to {\Bbb R};\,\,\,y = f\left( x \right)\)

    Daher nennt man

    • y die abhängige Variable bzw. den Funktionswert
    • x die unabhängige Variable bzw. das Funktionsargument

    Typen wichtiger Funktionsgleichungen

    Konstante Funktion \(f\left( x \right) = c\)
    Direkt proportionale Funktion
    sie sind für d=0 eine Untermenge der linearen Funktionen
    \(f\left( x \right) = k \cdot x\)
    Lineare Funktion \(f\left( x \right) = k \cdot x + d\)
    Quadratische Funktion (Parabel) \(f\left( x \right) = a \cdot {x^2} + b \cdot x + c\)
    Indirekt proportionale Funktion (Hyperbel)
    sie sind für negative n eine Untermenge der Potenzfunktionen
    \(f\left( x \right) = \dfrac{c}{{{x^n}}} = c \cdot {x^{ - n}}\)
    Potenzfunktion \(f\left( x \right) = c \cdot {x^n}\)
    Wurzelfunktion \(f\left( x \right) = \root n \of x = {x^{\dfrac{1}{n}}}\)
    Exponentialfunktion \(\begin{array}{l} f\left( x \right) = c \cdot {a^x}\\ f\left( x \right) = c \cdot {e^x} \end{array}\)
    Logarithmusfunktion \(f\left( x \right) = {}^a\log x\)
    Periodische Funktion \(f\left( {x + T} \right) = f\left( x \right)\)
    Polynomfunktion \(f\left( x \right) = {a_n} \cdot {x^n} + {a_{n - 1}} \cdot {x^{n - 1}} + ... + {a_1} \cdot x + {a_0}\)
    uvm.

    Graph einer Funktion

    Jedem Wert auf der x-Achse wird über die Funktion ein Punkt auf der y-Achse zugeordnet. Die Menge aller Punkte einer Funktion f(x) mit den Koordinaten (x|y=f(x)) bilden eine Kurve in der Gaus`schen Ebene, den sogenannten Graphen der Funktion.

    \(y = f\left( x \right)\)

    Geometrische Darstellung: Trägt man die unabhängige Variable x auf der x-Achse und die abhängige Variable y=f(x) auf der y-Achse auf, erhält man den Graph als eine grafische Darstellung der Funktion in Form einer Kurve.

    Funktion f f(x) = 0.5(x - 1)³ + 0.5(x - 1)² - (x - 1) $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$” $${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$ Text1 = “$${\text{y = f(x) = 0}}{\text{.5(x - 1}}{{\text{)}}^3} + 0.5{\left( {x - 1} \right)^2} - \left( {x - 1} \right)$$”


    Wertetabelle einer Funktion

    Trägt man in einer 2-spaltigen Tabelle in der 1. Spalte die x-Werte gemäß der Definitionsmenge Df ein und in der 2. Spalte die y=f(x) Werte gemäß der Wertemenge Wf, so erhält man Zahlenpaare, die die Zeilen der Wertetabelle bilden.

    x y=f(x)
    x1 f(x1)
    x2 f(x2)
    ... ...
    xi f(xi)

    Mengendiagramm einer Funktion

    Grafische Gegenüberstellung von Definitionsmenge und Wertemenge einer Funktion, wobei die Wertepaare durch Pfeile mit einander verbunden werden

    Ellipse D_f Ellipse D_f: Ellipse mit Brennpunkten A, B durch C Ellipse D_f Ellipse D_f: Ellipse mit Brennpunkten A, B durch C Ellipse W_f Ellipse W_f: Ellipse mit Brennpunkten D, E durch F Ellipse W_f Ellipse W_f: Ellipse mit Brennpunkten D, E durch F Vektor u Vektor u: Vektor[x_4, y_1] Vektor u Vektor u: Vektor[x_4, y_1] Vektor v Vektor v: Vektor[x_1, y_2] Vektor v Vektor v: Vektor[x_1, y_2] Vektor w Vektor w: Vektor[x_3, y_4] Vektor w Vektor w: Vektor[x_3, y_4] D_f Text1 = "D_f" D_f Text1 = "D_f" W_f Text2 = "W_f" W_f Text2 = "W_f" x_1 Text3 = "x_1" x_1 Text3 = "x_1" x_2 Text4 = "x_2" x_2 Text4 = "x_2" x_3 Text5 = "x_3" x_3 Text5 = "x_3" y_1 Text6 = "y_1" y_1 Text6 = "y_1" y_2 Text7 = "y_2" y_2 Text7 = "y_2" y_3 Text8 = "y_3" y_3 Text8 = "y_3"

    Funktion
    Definitionsbereich
    Wertebereich
    Funktionsgleichung
    abhängige Variable
    unabhängige Variable
    Konstante Funktion
    Lineare Funktion
    Quadratische Funktion
    Indirekt proportionale Funktion
    Potenzfunktionen
    Wurzelfunktionen
    Exponentialfunktionen
    Logarithmusfunktionen
    Periodische Funktion
    Polynomfunktion
    Direkt proportionale Funktion
    Funktionswerte
    Argument einer Funktion
    Funktionen Überblick
    Reelle Funktionen
    Darstellung einer Funktion
    Graph einer Funktion
    Wertetabelle einer Funktion
    Fragen oder Feedback

    Schon den nächsten Badeurlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Damit niemand mehr bei Mathe in's Schwimmen kommt!

    Startseite
    Bild
    Illustration Schwimmerin 1050x450
    Startseite
    Aufgaben
    Lösungsweg

    Aufgabe 6032

    Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis​

    Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst


    Mithilfe der Funktion f lässt sich modellhaft das Alter einer Fichte in Abhängigkeit von ihrer Stammdicke x in Metern beschreiben, sofern die Fichte zwischen 10 und 120 Jahre alt ist. Als Stammdicke wird der in 1,30m Höhe über dem Erdboden gemessene Durchmesser des Fichtenstamms bezeichnet. Der Funktionsterm

    \(f\left( x \right) = 20 \cdot \ln \left( {\dfrac{{20x}}{{1 - x}}} \right)\)

    gibt im Modell das Alter der Fichte in Jahren an.

    1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40

    Bestimmen Sie auf der Grundlage des Modells das Alter einer Fichte, deren Stammdicke 40 cm beträgt.


    2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:0

    Ermitteln Sie rechnerisch die Werte der Stammdicke, für die das Modell aufgrund des angegebenen Altersbereichs gültig ist.

    (zur Kontrolle: von etwa 8 cm bis etwa 95 cm)


    3. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40

    Interpretieren Sie die Bedeutung der y-Koordinate des Wendepunkts W von Gf in Bezug auf die Wachstumsgeschwindigkeit der Stammdicke in Abhängigkeit vom Baumalter.


    Die nachfolgende Abbildung zeigt den Graphen Gh einer in \({\Bbb R}\) definierten Funktion

    \(h:x \mapsto a \cdot \dfrac{{{e^{bx}}}}{{{e^{bx}} + c}}{\text{ mit }}a,b,c \in {{\Bbb R}^ + }\)

    Funktion h h(x) = 40ℯ^(0.03x) / (ℯ^(0.03x) + 9) Funktion f f(x) = Wenn(0 < x < 300, 40) Punkt W_h Punkt W_h: (40ln(9), h(40ln(9))) Punkt W_h Punkt W_h: (40ln(9), h(40ln(9))) Punkt S Punkt S: (0, h(0)) Punkt S Punkt S: (0, h(0)) G_h text1 = “G_h” G_h text1 = “G_h” W_h Text1 = “W_h” W_h Text1 = “W_h” S Text2 = “S” x Text3 = “x” y Text4 = “y”

    4. Teilaufgabe d.1) 1 BE - Bearbeitungszeit: 2:20

    Begründen Sie mithilfe des Grenzwerts \(\mathop {\lim }\limits_{x \to + \infty } h\left( x \right) = 40\) dass a=40 ist.


    5. Teilaufgabe d.2) 2 BE - Bearbeitungszeit: 4:40

    Begründen Sie mithilfe des Achsenschnittpunkts S(0 | 4) von Gh , dass c=9 ist.


    6. Teilaufgabe d.3) 2 BE - Bearbeitungszeit: 4:40

    Bestimmen Sie mithilfe des Wendepunkts \({W_h}\left( {40 \cdot \ln 9\left| {h\left( {40 \cdot \ln 9} \right)} \right.} \right)\) den Wert von b


    Mithilfe der in \({\Bbb R}\) definierten Funktion

    \(h:x \mapsto 40 \cdot \dfrac{{{e^{0,025 \cdot x}}}}{{{e^{0,025 \cdot x}} + 9}}\)

    kann im Bereich \(\left( {10 \leqslant x \leqslant 120} \right)\) modellhaft die Höhe einer Fichte in Abhängigkeit von ihrem Alter beschrieben werden. Dabei ist x das Alter der Fichte in Jahren und h(x) die Höhe der Fichte in Metern.

    7. Teilaufgabe e.1) 2 BE - Bearbeitungszeit: 4:40

    Berechnen Sie auf der Grundlage der beiden betrachteten Modelle die Höhe einer Fichte mit einer Stammdicke von 25 cm


    8. Teilaufgabe e.2) 1 BE - Bearbeitungszeit: 2:20

    Tragen Sie den zugehörigen Punkt in die Abbildung ein.

    Bild
    Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis​

    9. Teilaufgabe f) 4 BE - Bearbeitungszeit: 9:20

    Zeichnen Sie in obige Abbildung den Verlauf des Graphen der Funktion, die auf der Grundlage der beiden betrachteten Modelle die Höhe einer Fichte in Abhängigkeit von ihrer Stammdicke beschreibt.

    kostenlose Vorbereitung Mathe Abitur Bayern 2015 - Teil B - Analysis
    Funktionswerte
    Wendepunkt einer Funktion
    Fragen oder Feedback

    Schon den nächsten Badeurlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Damit niemand mehr bei Mathe in's Schwimmen kommt!

    Startseite
    Bild
    Illustration Schwimmerin 1050x450
    Startseite
    Lösungsweg

    Aufgabe 4129

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 20. September 2018 - Teil-A Aufgabe
    Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Kugelstoßen - Aufgabe A_268

    Teil c

    Kugelstoßen ist eine Disziplin bei den Olympischen Sommerspielen. Eine Metallkugel muss so weit wie möglich aus einem Kreis in einen vorgegebenen Aufschlagbereich gestoßen werden. Die Bahnkurve einer gestoßenen Kugel lässt sich näherungsweise durch den Graphen der quadratischen Funktion h beschreiben:
    \(h\left( x \right) = - 0,05 \cdot {x^2} + 0,75 \cdot x + 2{\text{ mit }}x \geqslant 0\)

    mit
    x ... horizontale Entfernung der Kugel von der Abstoßstelle in m
    h(x) ... Höhe der Kugel über dem Boden bei der horizontalen Entfernung x in m

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Geben Sie an, in welcher Höhe die Kugel abgestoßen wird.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40
    Ermitteln Sie, in welcher horizontalen Entfernung von der Abstoßstelle die Kugel auf dem Boden aufschlägt.
    [1 Punkt]

    Kugelstoßen - Aufgabe A_268
    abc-Formel
    Funktionswerte
    Polynomfunktion
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.1
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 3.4
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1317

    AHS - 1_317 & Lehrstoff: FA 4.3
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Funktionswert bestimmen
    Der Graph einer Polynomfunktion f dritten Grades hat im Ursprung einen Wendepunkt und geht durch den Punkt P = (1|2).


    Aufgabenstellung
    Geben Sie den Funktionswert an der Stelle x = –1 an!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 4.3
    Funktionswerte
    Funktionswert bestimmen - 1317. Aufgabe 1_317
    Ungerade Funktion
    Polynomfunktion 3. Grades
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 1135

    AHS - 1_135 & Lehrstoff: FA 1.4
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Funktionsgraphen
    Gegeben sind die Graphen der Funktionen f, g und h.

    Funktion f f(x) = x Funktion g g(x) = 1 / x Funktion h h(x) = 4 - x f text1 = "f" g text2 = "g" h text3 = "h"

    • Aussage 1: \(g\left( 1 \right) > g\left( 3 \right)\)
    • Aussage 2: \(h\left( 1 \right) > h\left( 3 \right)\)
    • Aussage 3: \(f\left( 1 \right) = g\left( 1 \right)\)
    • Aussage 4: \(h\left( 1 \right) = g\left( 1 \right)\)
    • Aussage 5: \(f\left( 1 \right) < f\left( 3 \right)\)

    Aufgabenstellung:
    Kreuzen Sie die beiden zutreffenden Aussagen an!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 1.4
    Funktionswerte
    Graph einer Funktion
    Funktionsgraphen - 1135. Aufgabe 1_135
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1313

    AHS - 1_313 & Lehrstoff: FA 1.4
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Funktionswerte
    Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f vierten Grades.

    Funktion f f(x) = Wenn[-1 < x < 10, -0.02x⁴ + 0.34x³ - 1.62x² + 2x + 2] f Text1 = "f"


    Aufgabenstellung
    Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!

    Für alle reellen Werte _____1______ gilt für die Funktionswerte dieser Funktion f _____2______ .

    1
    \(x > 6\) A
    \(x \in \left[ { - 1;1} \right]\) B
    \(x \in \left[ {1;5} \right]\) C

    2
    \(f\left( x \right) > 3\) I
    \(f\left( x \right) \in \left[ { - 1;1} \right]\) II
    \(f\left( x \right) \in \left[ {0;3} \right]\) III
    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 1.4
    Funktionswerte
    Intervall
    Funktionswerte - 1313. Aufgabe 1_313
    Fragen oder Feedback

    Schon den nächsten Badeurlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Damit niemand mehr bei Mathe in's Schwimmen kommt!

    Startseite
    Bild
    Illustration Schwimmerin 1050x450
    Startseite
    Lösungsweg

    Aufgabe 1282

    AHS - 1_282 & Lehrstoff: FA 6.2
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Luftvolumen
    Der Luftstrom beim Ein- und Ausatmen einer Person im Ruhezustand ändert sich in Abhängigkeit von der Zeit nach einer Funktion f. Zum Zeitpunkt t = 0 beginnt ein Atemzyklus. f(t) ist die bewegte Luftmenge in Litern pro Sekunde zum Zeitpunkt t in Sekunden. F(t) beschreibt das zum Zeitpunkt t in der Lunge vorhandene Luftvolumen, abgesehen vom Restvolumen.

    Funktion f f(x) = Wenn[0 < x < 11, 0.5sin(5 / 4 x)] Funktion g g(x) = Wenn[0 < x < 11, 0.4cos(1.2 (x - 4π / 5)) + 0.4] f Text1 = "f" F Text2 = "F"

    Datenquelle: Timischl, W. (1995). Biomathematik: Eine Einführung für Biologen und Mediziner. 2. Auflage. Wien u. a.: Springer.)


    Aufgabenstellung
    Bestimmen Sie F(2,5) und interpretieren Sie den Wert!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 6.2
    Funktionswerte
    Luftvolumen - 1282. Aufgabe 1_282
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 1242

    AHS - 1_242 & Lehrstoff: FA 1.4
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Chemisches Experiment
    In der nachstehenden Grafik wird der Temperaturverlauf (T in °C) eines chemischen Experiments innerhalb der ersten 8 Minuten annähernd wiedergegeben.

    Funktion f f(x) = Wenn[0 < x < 8, 0.25x³ - 2.76x² + 6.53x + 26]


    Aufgabenstellung:
    Bestimmen Sie die Werte T(1) und T(3,5) möglichst genau und erklären Sie in Worten, was durch diese Werte bestimmt wird!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 1.4
    Chemisches Experiment - 1242. Aufgabe 1_242
    Funktionswerte
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 1018

    AHS - 1_018 & Lehrstoff: FA 2.4
    Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Charakteristische Eigenschaften einer linearen Funktion

    Gegeben ist eine reelle Funktion f mit \(f\left( x \right) = 3x + 2\)

    • Aussage 1: \(f\left( {x + 1} \right) = f\left( x \right) + 3\)
    • Aussage 2: \(f\left( {x + 1} \right) = f\left( x \right) + 2\)
    • Aussage 3: \(f\left( {x + 1} \right) = 3 \cdot f\left( x \right)\)
    • Aussage 4: \(f\left( {x + 1} \right) = 2 \cdot f\left( x \right)\)
    • Aussage 5: \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = 3 \cdot \left( {{x_2} - {x_1}} \right){\text{ wobei }}{x_1},\,\,\,{x_2} \in \mathbb{R}{\text{ und }}{x_1} \ne {x_2}\)

    Aufgabenstellung:
    Kreuzen Sie die beiden Eigenschaften an, die auf die Funktion f zutreffen!

    AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 2.4
    Lineare Funktion
    Charakteristische Eigenschaften einer linearen Funktion - 1018. Aufgabe 1_018
    Funktionswerte
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Tablet
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH