Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Prüfungsvorbereitung Matura, Abitur und STEOP
  3. Matura Österreich BHS - Angewandte Mathematik
  4. Teil B Aufgaben für spezielle Cluster

Teil B Aufgaben für spezielle Cluster

Hier findest du folgende Inhalte

347
Aufgaben
    Aufgaben
    LösungswegBeat the Clock

    Aufgabe 4016

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Bodenunebenheiten - Aufgabe B_405

    Teil a
    Um Unebenheiten eines Bodens festzustellen, wird eine Messlatte verwendet.

    Zahl a Zahl a: IntegralZwischen(f, g, 0.07, 0.9) Zahl a Zahl a: IntegralZwischen(f, g, 0.07, 0.9) Funktion p p(x) = Wenn(0 < x < 0.9, -70000x⁴ + 150000x³ - 100000x² + 17000x + 3000) Funktion f f(x) = Wenn(0.05 < x < 0.9, -4046x + 4378) Funktion g g(x) = Wenn(0.07 < x < 0.91, -4046x + 6000) Funktion q q(x) = Wenn(-0.1 < x < 0.15, -4046x + 4378) Funktion r r(x) = Wenn(0.9 < x < 1, -4046x + 4378) Funktion s s(x) = Wenn(-0.08 < x < 0, -70000x⁴ + 150000x³ - 100000x² + 17000x + 3000) Funktion t t(x) = Wenn(0.9 < x < 1.1, -70000x⁴ + 150000x³ - 100000x² + 17000x + 3000) Strecke i Strecke i: Strecke B, C Strecke j Strecke j: Strecke D, E Punkt F Punkt F: Punkt auf f Punkt F Punkt F: Punkt auf f Punkt G Punkt G: Punkt auf f Punkt G Punkt G: Punkt auf f p(x), f(x), in mm text1 = “p(x), f(x), in mm” Messlatte text2 = “Messlatte” x in m text3 = “x in m” P_1 Text1 = “P_1” P_1 Text1 = “P_1” P_2 Text2 = “P_2” P_2 Text2 = “P_2” p(x) Text3 = “p(x)” f(x) Text4 = “f(x)”

    Das Profil des Bodens kann näherungsweise durch den Graphen einer Polynomfunktion p beschrieben werden, die Unterkante der Messlatte kann durch den Graphen einer linearen Funktion f beschrieben werden. Die Messlatte berührt den Boden in den Punkten \({P_1} = \left( {{x_1}\left| {p\left( {{x_1}} \right)} \right.} \right){\text{ und }}{P_2} = \left( {{x_2}\left| {p\left( {{x_2}} \right)} \right.} \right)\). Eine der folgenden Aussagen stimmt nicht mit der obigen Abbildung überein.

    • Aussage 1: \(k = \dfrac{{p\left( {{x_2}} \right) - p\left( {{x_1}} \right)}}{{{x_2} - {x_1}}}\)
    • Aussage 2: \(p'\left( {{x_1}} \right) = 0\)
    • Aussage 3: \(p'\left( {{x_2}} \right) = k\)
    • Aussage 4: \(p'\left( {{x_1}} \right) = p'\left( {{x_2}} \right)\)
    • Aussage 5: \(f\left( {{x_1}} \right) = p\left( {{x_1}} \right)\)

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Kreuzen Sie die nicht zutreffende Aussage an.
    [1 aus 5] [1 Punkt]

    Bodenunebenheiten - Aufgabe B_405
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL1
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL2
    Differenzenquotient
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Differenzialrechnung
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.4
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.2
    Fragen oder Feedback

    Schon den nächsten Badeurlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Damit niemand mehr bei Mathe in's Schwimmen kommt!

    Startseite
    Bild
    Illustration Schwimmerin 1050x450
    Startseite
    LösungswegBeat the Clock

    Aufgabe 4017

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Bodenunebenheiten - Aufgabe B_405

    Teil b


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Um Unebenheiten eines Bodens festzustellen, wird eine Messlatte verwendet.

    Zahl a Zahl a: IntegralZwischen(f, g, 0.07, 0.9) Zahl a Zahl a: IntegralZwischen(f, g, 0.07, 0.9) Funktion p p(x) = Wenn(0 < x < 0.9, -70000x⁴ + 150000x³ - 100000x² + 17000x + 3000) Funktion f f(x) = Wenn(0.05 < x < 0.9, -4046x + 4378) Funktion g g(x) = Wenn(0.07 < x < 0.91, -4046x + 6000) Funktion q q(x) = Wenn(-0.1 < x < 0.15, -4046x + 4378) Funktion r r(x) = Wenn(0.9 < x < 1, -4046x + 4378) Funktion s s(x) = Wenn(-0.08 < x < 0, -70000x⁴ + 150000x³ - 100000x² + 17000x + 3000) Funktion t t(x) = Wenn(0.9 < x < 1.1, -70000x⁴ + 150000x³ - 100000x² + 17000x + 3000) Strecke i Strecke i: Strecke B, C Strecke j Strecke j: Strecke D, E Punkt F Punkt F: Punkt auf f Punkt F Punkt F: Punkt auf f Punkt G Punkt G: Punkt auf f Punkt G Punkt G: Punkt auf f p(x), f(x), in mm text1 = “p(x), f(x), in mm” Messlatte text2 = “Messlatte” x in m text3 = “x in m” P_1 Text1 = “P_1” P_1 Text1 = “P_1” P_2 Text2 = “P_2” P_2 Text2 = “P_2” p(x) Text3 = “p(x)” f(x) Text4 = “f(x)”

    Begründen Sie, warum der Grad der in der obigen Abbildung dargestellten Polynomfunktion p größer oder gleich 4 sein muss.
    [1 Punkt]

    Bodenunebenheiten - Aufgabe B_405
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL1
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL2
    Polynomfunktion n-ten Grades
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Polynomfunktion
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_T_3.2
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_P_3.1
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4018

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Bodenunebenheiten - Aufgabe B_405

    Teil c
    Der Graph der Polynomfunktion p mit \(p\left( x \right) = a \cdot {x^4} + b \cdot {x^3} + c \cdot {x^2} + d \cdot x + e\) verläuft durch die folgenden 5 Punkte:

    \(\eqalign{ & A = \left( {0\left| {1,8} \right.} \right) \cr & B = \left( {0,25\left| {2,1} \right.} \right) \cr & C = \left( {0,5\left| {0,4} \right.} \right) \cr & D = (0,75\left| {0,7)} \right. \cr & E = \left( {1\left| {0,5} \right.} \right) \cr} \)

    mit

    x horizontale Koordinate in Metern (m)
    p(x) vertikale Koordinate in Millimetern (mm)

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Stellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten dieser Polynomfunktion p auf.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40
    Ermitteln Sie die Koeffizienten dieser Polynomfunktion p.
    [1 Punkt]

    Bodenunebenheiten - Aufgabe B_405
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL1
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL2
    Polynomfunktion n-ten Grades
    Geogebra Löst Gleichung exakt
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Lineare Gleichungssysteme
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.8
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4019

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Bodenunebenheiten - Aufgabe B_405

    Teil d
    Um die Unebenheit eines anderen Bodens zu ermitteln, soll der Punkt T bestimmt werden. Im Punkt T ist die Tangente an den Graphen von p parallel zur Geraden f (siehe nachstehende Skizze).

    Zahl a Zahl a: IntegralZwischen(f, g, 0, 1) Zahl a Zahl a: IntegralZwischen(f, g, 0, 1) Funktion p p(x) = Wenn(0 < x < 1, -70000x⁴ + 150000x³ - 100000x² + 17000x + 3000) Funktion f f(x) = -4046x + 4378 Funktion g g(x) = -4046x + 6000 Funktion h h(x) = Wenn(0.4 < x < 0.65, -4046x + 2850) Punkt T Punkt T: (0.52, h(0.52)) Punkt T Punkt T: (0.52, h(0.52)) p(x), f(x), in mm text1 = “p(x), f(x), in mm” Messlatte text2 = “Messlatte” x in m text3 = “x in m” f text4 = “f” p text5 = “p” // Text1 = “//” // Text1_1 = “//” T Text2 = “T”

    Es gilt:
    \(\eqalign{ & p\left( x \right) = - 70,000 \cdot {x^4} + 150,000 \cdot {x^3} - 100,000 \cdot {x^2} + 17,000 \cdot x + 3,000 \cr & f\left( x \right) = - 4,046 \cdot x + 4,378 \cr} \)

    mit:

    x horizontale Koordinate in Metern (m)
    p(x), f(x) vertikale Koordinate in Millimetern (mm)

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Erstellen Sie eine Gleichung, mit der die x-Koordinate des Punktes T berechnet werden kann.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie die x-Koordinate des Punktes T.
    [1 Punkt]

    Bodenunebenheiten - Aufgabe B_405
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL1
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL2
    Potenzen differenzieren
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Polynomfunktion
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.11
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 4.4
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4020

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Weinbau - Aufgabe B_412

    Teil a
    Aus nostalgischen Gründen werden in einem kleinen Weingut Trauben der Sorte Welschriesling mit einer renovierten Handpresse gepresst. Der zylinderförmige Korb, in dem die Weintrauben gepresst werden, hat dabei die folgenden Abmessungen: Höhe h = 80 cm, Innenradius r = 42 cm.


    1. Teilaufgabe - Bearbeitungszeit 11:20
    Überprüfen Sie nachweislich mithilfe der Volumensformel des Drehzylinders, ob die nachstehenden Aussagen jeweils richtig sind.
    [2 Punkte]

    • Aussage 1: „Wäre die zylinderförmige Presse 1,6 m hoch (bei gleichem Durchmesser), so würde sie das doppelte Volumen fassen.“
    • Aussage 2: „Hätte die zylinderförmige Presse einen Innenradius von 84 cm (bei gleicher Höhe), so würde sie das doppelte Volumen fassen.“

    2. Teilaufgabe - Bearbeitungszeit 5:40
    Der Korb ist zu 95 % mit Trauben gefüllt. Aus diesen Trauben werden 350 Liter Traubenmost gepresst.

    Berechnen Sie den prozentuellen Anteil des Traubenmosts am ursprünglichen Volumen der Trauben.
    [1 Punkt]

    Weinbau - Aufgabe B_412
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HLFS, HUM
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster BAfEP, BASOP, BRP
    Verhältnisgrößen
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Geometrie
    Prozente und Promille
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.5
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.5
    Fragen oder Feedback

    Schon den nächsten Badeurlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Damit niemand mehr bei Mathe in's Schwimmen kommt!

    Startseite
    Bild
    Illustration Schwimmerin 1050x450
    Startseite
    LösungswegBeat the Clock

    Aufgabe 4021

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Weinbau - Aufgabe B_412

    Teil b
    Weine der Sorten Zweigelt und Grüner Veltliner werden in Kisten zu 12 Flaschen und Kartons zu 6 Flaschen verkauft. Die Preise pro Flasche sind unabhängig von der Packungsgröße.

    • 1 Kiste Zweigelt und 1 Karton Grüner Veltliner kosten insgesamt € 47,40.
    • 2 Kisten Grüner Veltliner und 1 Karton Zweigelt kosten insgesamt € 72.

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Erstellen Sie ein Gleichungssystem, mit dem der Preis für eine Flasche Zweigelt und der Preis für eine Flasche Grüner Veltliner berechnet werden können.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie den Preis für eine Flasche Zweigelt und den Preis für eine Flasche Grüner Veltliner.
    [1 Punkt]

    Weinbau - Aufgabe B_412
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HLFS, HUM
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster BAfEP, BASOP, BRP
    Substitutionsverfahren für lineare Gleichungssysteme
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Lineare Gleichungssysteme
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4022

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Weinbau - Aufgabe B_412

    Teil c
    Der Wein wird mit einem manuellen Reihenfüller in Flaschen abgefüllt. Das Füllvolumen der Flaschen kann dabei als annähernd normalverteilt mit dem Erwartungswert μ und der Standardabweichung σ angenommen werden. Es liegen 95 % der Füllvolumina in dem um μ symmetrischen Intervall von 995 Millilitern (ml) bis 1 015 ml.


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie den Erwartungswert μ des Füllvolumens der Flaschen.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie die Standardabweichung σ.
    [1 Punkt]

    Weinbau - Aufgabe B_412
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HLFS, HUM
    Normalverteilung
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Normalverteilung
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_W_5.1
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_T_5.1
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4023

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Weinbau - Aufgabe B_413

    Teil d
    Während der Vergärung von Traubenmost zu Wein wird CO2 gebildet. In der nachstehenden Tabelle sind 6 Messwerte eines Vergärungsprozesses angegeben.

    Zeit in Sekunden CO2 Druck in Kilopascal
    0 90
    100 100
    200 115
    300 135
    400 155
    500 190

    Die Abhängigkeit des CO2-Drucks von der Zeit soll beschrieben werden.


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Ermitteln Sie mithilfe der gegebenen Daten eine Gleichung der zugehörigen exponentiellen Regressionsfunktion.
    [1 Punkt]

    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster BAfEP, BASOP, BRP
    Regressionsgerade
    Geogebra TrendExp2
    Weinbau - Aufgabe B_413
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Regression - nicht linear
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_P_5.1
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4024

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Weinbau - Aufgabe B_413

    Teil e
    Der Wein wird mit einem manuellen Reihenfüller in Flaschen abgefüllt. Das Füllvolumen der Flaschen kann dabei als annähernd normalverteilt mit dem Erwartungswert μ = 1 005 Milliliter (ml) und der Standardabweichung σ = 5 ml angenommen werden.


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Ermitteln Sie dasjenige um μ symmetrische Intervall, in dem 95 % der Füllvolumina liegen.
    [1 Punkt]

    In der nachstehenden Abbildung ist der Graph der Dichtefunktion dieser Normalverteilung dargestellt.
    Funktion f Funktion f: Normal(1005, 4, x, false) Füllvolumen in ml text1 = “Füllvolumen in ml”


    2. Teilaufgabe - Bearbeitungszeit 5:40
    Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit, dass eine zufällig ausgewählte Flasche ein Füllvolumen von mindestens 1 000 ml hat.
    [1 Punkt]

    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster BAfEP, BASOP, BRP
    Geogebra InversNormal Befehl
    Normalverteilung
    Weinbau - Aufgabe B_413
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Normalverteilung
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.6
    Fragen oder Feedback

    Schon den nächsten Badeurlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Damit niemand mehr bei Mathe in's Schwimmen kommt!

    Startseite
    Bild
    Illustration Schwimmerin 1050x450
    Startseite
    Lösungsweg

    Aufgabe 4025

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Prismen und Linsen - Aufgabe B_411

    Teil a
    Der Verlauf eines Lichtstrahls durch ein Glasprisma wird als Strahlengang bezeichnet. In einem Spezialglas beträgt die Lichtgeschwindigkeit 205 337 300 m/s. In einem aus diesem Glas gefertigten Prisma beträgt die Länge des Strahlengangs 5 cm.


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie, wie viele Sekunden es dauert, bis ein Lichtstrahl dieses Prisma durchquert hat.
    [1 Punkt]

    Prismen und Linsen - Aufgabe B_411
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL1
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL2
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster BAfEP, BASOP, BRP
    nano
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Zahlen und Maße
    Bewegungsaufgaben
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 1.2
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback
    Lösungsweg

    Aufgabe 4026

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Prismen und Linsen - Aufgabe B_411

    Teil b
    Ein Strahlengang durch ein Glasprisma einer Filmkamera kann folgendermaßen dargestellt werden:

    Sektor c Sektor c: Kreissektor(K, L, M) Sektor c Sektor c: Kreissektor(K, L, M) Sektor d Sektor d: Kreissektor(N, O, P) Sektor d Sektor d: Kreissektor(N, O, P) Sektor k Sektor k: Kreissektor(N, S, T) Sektor k Sektor k: Kreissektor(N, S, T) Sektor q Sektor q: Kreissektor(Z, A_1, B_1) Sektor q Sektor q: Kreissektor(Z, A_1, B_1) Sektor r Sektor r: Kreissektor(Z, C_1, D_1) Sektor r Sektor r: Kreissektor(Z, C_1, D_1) Strecke f Strecke f: Strecke A, B Strecke g Strecke g: Strecke B, D Strecke h Strecke h: Strecke D, C Strecke i Strecke i: Strecke A, C Vektor u Vektor u: Vektor(E, F) Vektor u Vektor u: Vektor(E, F) Vektor v Vektor v: Vektor(G, E) Vektor v Vektor v: Vektor(G, E) Vektor w Vektor w: Vektor(H, G) Vektor w Vektor w: Vektor(H, G) Vektor a Vektor a: Vektor(I, J) Vektor a Vektor a: Vektor(I, J) Vektor b Vektor b: Vektor(J, I) Vektor b Vektor b: Vektor(J, I) Punkt E_1 E_1 = (7.04, 5.66) Punkt E_1 E_1 = (7.04, 5.66) a text1 = “a” z text2 = “z” y text3 = “y” x text4 = “x” \beta text5 = “\beta” \beta text6 = “\beta” \gamma text7 = “\gamma” \gamma text8 = “\gamma”
    Hinweis: Die Skizze ist nicht maßstabsgetreu!

    \(\eqalign{ & a = 0,50{\text{ cm}} \cr & x = 0,55{\text{ cm}} \cr & \beta = 40^\circ \cr & \gamma = 68^\circ \cr} \)


    1. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie die Länge z des Strahlengangs.
    [1 Punkt]


    2. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie die Länge y des Strahlengangs.
    [1 Punkt]


    3. Teilaufgabe - Bearbeitungszeit 5:40
    Berechnen Sie die Länge x + y + z des Strahlengangs
    [1 Punkt]

    Prismen und Linsen - Aufgabe B_411
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL1
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL2
    Sinussatz
    Tangensfunktion
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    sin cos tan im rechtwinkeligen Dreieck
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_P_2.2
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_T_2.1
    Fragen oder Feedback
    LösungswegBeat the Clock

    Aufgabe 4027

    Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
    Quelle: BHS Matura vom 10. Mai 2017 - Teil-B-Aufgaben
    ​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


    Prismen und Linsen - Aufgabe B_411

    Teil c
    Bei der Abbildung eines Gegenstands mithilfe einer Sammellinse gelten folgende Beziehungen:

    \(\dfrac{B}{G} = \dfrac{b}{g}{\text{ und }}b = \dfrac{{g \cdot f}}{{g - f}}\)

    mit

    B Höhe des Bildes
    G Höhe des Gegenstands
    b Abstand des Bildes von der Linse
    g Abstand des Gegenstands von der Linse
    f Brennweite der Linse

    1. Teilaufgabe - Bearbeitungszeit 5:40
    Kreuzen Sie die zutreffende Aussage an.
    [1 aus 5] [1 Punkt]

    • Aussage 1: Wenn g = 3 · f gilt, dann ist B größer als G.
    • Aussage 2: Wenn g = 3 · f gilt, dann ist B = G.
    • Aussage 3: Wenn g = 2 · f gilt, dann ist B kleiner als G.
    • Aussage 4: Wenn g = 2 · f gilt, dann ist B = G.
    • Aussage 5: Wenn g = 2 · f gilt, dann ist B größer als G.
    Prismen und Linsen - Aufgabe B_411
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL1
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster HTL2
    kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool Cluster BAfEP, BASOP, BRP
    Substitutionsverfahren für lineare Gleichungssysteme
    Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
    Formeln und Abhängigkeiten
    BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 2.6
    Fragen oder Feedback

    Seitennummerierung

    • Aktuelle Seite 1
    • Page 2
    • Page 3
    • Page 4
    • Page 5
    • Page 6
    • Page 7
    • Page 8
    • Page 9
    • …
    • Nächste Seite
    • Letzte Seite

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Tablet
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH