Teil B Aufgaben für spezielle Cluster
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4016
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil a
Um Unebenheiten eines Bodens festzustellen, wird eine Messlatte verwendet.
Das Profil des Bodens kann näherungsweise durch den Graphen einer Polynomfunktion p beschrieben werden, die Unterkante der Messlatte kann durch den Graphen einer linearen Funktion f beschrieben werden. Die Messlatte berührt den Boden in den Punkten \({P_1} = \left( {{x_1}\left| {p\left( {{x_1}} \right)} \right.} \right){\text{ und }}{P_2} = \left( {{x_2}\left| {p\left( {{x_2}} \right)} \right.} \right)\). Eine der folgenden Aussagen stimmt nicht mit der obigen Abbildung überein.
- Aussage 1: \(k = \dfrac{{p\left( {{x_2}} \right) - p\left( {{x_1}} \right)}}{{{x_2} - {x_1}}}\)
- Aussage 2: \(p'\left( {{x_1}} \right) = 0\)
- Aussage 3: \(p'\left( {{x_2}} \right) = k\)
- Aussage 4: \(p'\left( {{x_1}} \right) = p'\left( {{x_2}} \right)\)
- Aussage 5: \(f\left( {{x_1}} \right) = p\left( {{x_1}} \right)\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die nicht zutreffende Aussage an.
[1 aus 5] [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4017
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil b
1. Teilaufgabe - Bearbeitungszeit 5:40
Um Unebenheiten eines Bodens festzustellen, wird eine Messlatte verwendet.
Begründen Sie, warum der Grad der in der obigen Abbildung dargestellten Polynomfunktion p größer oder gleich 4 sein muss.
[1 Punkt]
Aufgabe 4018
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil c
Der Graph der Polynomfunktion p mit \(p\left( x \right) = a \cdot {x^4} + b \cdot {x^3} + c \cdot {x^2} + d \cdot x + e\) verläuft durch die folgenden 5 Punkte:
\(\eqalign{ & A = \left( {0\left| {1,8} \right.} \right) \cr & B = \left( {0,25\left| {2,1} \right.} \right) \cr & C = \left( {0,5\left| {0,4} \right.} \right) \cr & D = (0,75\left| {0,7)} \right. \cr & E = \left( {1\left| {0,5} \right.} \right) \cr} \)
mit
x | horizontale Koordinate in Metern (m) |
p(x) | vertikale Koordinate in Millimetern (mm) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten dieser Polynomfunktion p auf.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Koeffizienten dieser Polynomfunktion p.
[1 Punkt]
Aufgabe 4019
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil d
Um die Unebenheit eines anderen Bodens zu ermitteln, soll der Punkt T bestimmt werden. Im Punkt T ist die Tangente an den Graphen von p parallel zur Geraden f (siehe nachstehende Skizze).
Es gilt:
\(\eqalign{ & p\left( x \right) = - 70,000 \cdot {x^4} + 150,000 \cdot {x^3} - 100,000 \cdot {x^2} + 17,000 \cdot x + 3,000 \cr & f\left( x \right) = - 4,046 \cdot x + 4,378 \cr} \)
mit:
x | horizontale Koordinate in Metern (m) |
p(x), f(x) | vertikale Koordinate in Millimetern (mm) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung, mit der die x-Koordinate des Punktes T berechnet werden kann.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die x-Koordinate des Punktes T.
[1 Punkt]
Aufgabe 4020
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_412
Teil a
Aus nostalgischen Gründen werden in einem kleinen Weingut Trauben der Sorte Welschriesling mit einer renovierten Handpresse gepresst. Der zylinderförmige Korb, in dem die Weintrauben gepresst werden, hat dabei die folgenden Abmessungen: Höhe h = 80 cm, Innenradius r = 42 cm.
1. Teilaufgabe - Bearbeitungszeit 11:20
Überprüfen Sie nachweislich mithilfe der Volumensformel des Drehzylinders, ob die nachstehenden Aussagen jeweils richtig sind.
[2 Punkte]
- Aussage 1: „Wäre die zylinderförmige Presse 1,6 m hoch (bei gleichem Durchmesser), so würde sie das doppelte Volumen fassen.“
- Aussage 2: „Hätte die zylinderförmige Presse einen Innenradius von 84 cm (bei gleicher Höhe), so würde sie das doppelte Volumen fassen.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Der Korb ist zu 95 % mit Trauben gefüllt. Aus diesen Trauben werden 350 Liter Traubenmost gepresst.
Berechnen Sie den prozentuellen Anteil des Traubenmosts am ursprünglichen Volumen der Trauben.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4021
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_412
Teil b
Weine der Sorten Zweigelt und Grüner Veltliner werden in Kisten zu 12 Flaschen und Kartons zu 6 Flaschen verkauft. Die Preise pro Flasche sind unabhängig von der Packungsgröße.
- 1 Kiste Zweigelt und 1 Karton Grüner Veltliner kosten insgesamt € 47,40.
- 2 Kisten Grüner Veltliner und 1 Karton Zweigelt kosten insgesamt € 72.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie ein Gleichungssystem, mit dem der Preis für eine Flasche Zweigelt und der Preis für eine Flasche Grüner Veltliner berechnet werden können.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Preis für eine Flasche Zweigelt und den Preis für eine Flasche Grüner Veltliner.
[1 Punkt]
Aufgabe 4022
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_412
Teil c
Der Wein wird mit einem manuellen Reihenfüller in Flaschen abgefüllt. Das Füllvolumen der Flaschen kann dabei als annähernd normalverteilt mit dem Erwartungswert μ und der Standardabweichung σ angenommen werden. Es liegen 95 % der Füllvolumina in dem um μ symmetrischen Intervall von 995 Millilitern (ml) bis 1 015 ml.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Erwartungswert μ des Füllvolumens der Flaschen.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Standardabweichung σ.
[1 Punkt]
Aufgabe 4023
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_413
Teil d
Während der Vergärung von Traubenmost zu Wein wird CO2 gebildet. In der nachstehenden Tabelle sind 6 Messwerte eines Vergärungsprozesses angegeben.
Zeit in Sekunden | CO2 Druck in Kilopascal |
0 | 90 |
100 | 100 |
200 | 115 |
300 | 135 |
400 | 155 |
500 | 190 |
Die Abhängigkeit des CO2-Drucks von der Zeit soll beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe der gegebenen Daten eine Gleichung der zugehörigen exponentiellen Regressionsfunktion.
[1 Punkt]
Aufgabe 4024
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_413
Teil e
Der Wein wird mit einem manuellen Reihenfüller in Flaschen abgefüllt. Das Füllvolumen der Flaschen kann dabei als annähernd normalverteilt mit dem Erwartungswert μ = 1 005 Milliliter (ml) und der Standardabweichung σ = 5 ml angenommen werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie dasjenige um μ symmetrische Intervall, in dem 95 % der Füllvolumina liegen.
[1 Punkt]
In der nachstehenden Abbildung ist der Graph der Dichtefunktion dieser Normalverteilung dargestellt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit, dass eine zufällig ausgewählte Flasche ein Füllvolumen von mindestens 1 000 ml hat.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4025
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil a
Der Verlauf eines Lichtstrahls durch ein Glasprisma wird als Strahlengang bezeichnet. In einem Spezialglas beträgt die Lichtgeschwindigkeit 205 337 300 m/s. In einem aus diesem Glas gefertigten Prisma beträgt die Länge des Strahlengangs 5 cm.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele Sekunden es dauert, bis ein Lichtstrahl dieses Prisma durchquert hat.
[1 Punkt]
Aufgabe 4026
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil b
Ein Strahlengang durch ein Glasprisma einer Filmkamera kann folgendermaßen dargestellt werden:
Hinweis: Die Skizze ist nicht maßstabsgetreu!
\(\eqalign{ & a = 0,50{\text{ cm}} \cr & x = 0,55{\text{ cm}} \cr & \beta = 40^\circ \cr & \gamma = 68^\circ \cr} \)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge z des Strahlengangs.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge y des Strahlengangs.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge x + y + z des Strahlengangs
[1 Punkt]
Aufgabe 4027
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B-Aufgaben
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil c
Bei der Abbildung eines Gegenstands mithilfe einer Sammellinse gelten folgende Beziehungen:
\(\dfrac{B}{G} = \dfrac{b}{g}{\text{ und }}b = \dfrac{{g \cdot f}}{{g - f}}\)
mit
B | Höhe des Bildes |
G | Höhe des Gegenstands |
b | Abstand des Bildes von der Linse |
g | Abstand des Gegenstands von der Linse |
f | Brennweite der Linse |
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Aussage an.
[1 aus 5] [1 Punkt]
- Aussage 1: Wenn g = 3 · f gilt, dann ist B größer als G.
- Aussage 2: Wenn g = 3 · f gilt, dann ist B = G.
- Aussage 3: Wenn g = 2 · f gilt, dann ist B kleiner als G.
- Aussage 4: Wenn g = 2 · f gilt, dann ist B = G.
- Aussage 5: Wenn g = 2 · f gilt, dann ist B größer als G.