Bestimmtes Integral
Hier findest du folgende Inhalte
Formeln
Rechenregeln für bestimmte Integrale
\(\int\limits_a^b {f\left( x \right)} \,\,dx = F\left( x \right)\left| {_a^b} \right. = F\left( b \right) - F\left( a \right)\)
Integral bei einer Intervalllänge gleich Null
\(\eqalign{ & \int\limits_a^a {f\left( x \right)\,\,dx = 0} \cr}\)
Vertauschen der Integrationsgrenzen
Beim Integrieren kehrt sich das Vorzeichen durch das Vertauschen der Integrationsgrenzen um
\(\int\limits_b^a {f\left( x \right)\,\,dx = - \int\limits_a^b {f\left( x \right)} } \,\,dx\)
Kombination benachbarter Intervalle
Beim Integrieren kann man benachbarte Intervalle zu einem Intervall zusammenfassen
\(\int\limits_a^b {f\left( x \right)\,\,dx + \int\limits_b^c {f\left( x \right)\,\,dx = \int\limits_a^c {f\left( x \right)\,\,dx} } } \)
Kriterium für Integrierbarkeit
Das Kriterium für Integrierbarkeit ist, dass die Funktion im Intervallbereich [a,b] monoton oder stetig oder zumindest stückweise stetig ist (d.h. nur endlich viele Unstetigkeitsstellen besitzt).
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Bestimmtes Integral - Bogenlänge
Das bestimmte Integral ermöglicht es, die Bogenlänge von einem Graphen zu berechnen, der durch eine Funktionsgleichung gegeben ist.
Bestimmtes Integral - Bogenlänge einer ebenen Kurve
Es sei f(x) eine im Intervall [a,b] differenzierbare, also eine stetige Funktion. Dann ist s Bogenlänge der ebenen Kurve. Eine Kurve heißt rektifizierbar, wenn sie eine endliche Bogenlänge s hat.
\(s = \int\limits_a^b {\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} \,\,dx}\)
Linearer Mittelwert m einer Funktion f im Intervall [a; b]
Neben der Bogenlänge der Funktion f(x) im Intervall [a; b] kann man sich auch für den mittleren Abstand des Bogens von der x-Achse innerhalb dieses Intervalls interessieren. Ein Beispiel wäre die mittlere Flughöhe eines Balls beim Schuss vom Elfmeterpunkt in Richtung vom Tor.
\(m = \dfrac{1}{{b - a}} \cdot \int\limits_a^b {f\left( x \right)} \,\,dx\)
Bestimmtes Integral - Flächeninhalte
Das bestimmte Integral ermöglicht es, Flächen zu berechnen, die von einem oder mehreren Funktionsgraphen und/oder einer Koordinatenachse begrenzt werden.
Bestimmtes Integral - Flächeninhalt zwischen Graph und x-Achse
Der Flächeninhalt zwischen Graph und x-Achse von stetigen positiven Funktionen f(x), ist mit Hilfe der zugehörigen Stammfunktion berechenbar.
\(A = \int\limits_a^b {f\left( x \right)\,\,dx} = F\left( x \right)\left| {_a^b} \right. = F\left( b \right) - F\left( a \right)\)
Ist in einem betrachteten Intervall f(x) < 0, so ergibt sich ein negativer Wert für den Flächeninhalt. Die zugehörige Fläche wird als „negativ orientiert“ bezeichnet.
Bestimmtes Integral - Flächeninhalt zwischen 2 einander nicht schneidender Graphen
Der Flächeninhalt zwischen 2 Graphen, die sich im Intervall [a,b] nicht schneiden, kann aus der Differenz der jeweiligen Flächeninhalte zwischen dem zugehörigem Graphen und der x-Achse berechnet werden. Dabei gilt grundsätzlich "obere Funktion" minus "untere Funktion"
\(A = \int\limits_a^b {f\left( x \right)\,\,dx - \int\limits_a^b {g\left( x \right)\,\,dx = } } \int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx} \)
Der Flächeninhalt zwischen 2 Graphen, die sich im Intervall [a,b] an der Stelle x1 schneiden
- Am einfachsten zu merken ist die 1. Art:
- An der Schnittstelle x1 der beiden Graphen sind die Integrale zu teilen.
- Es gilt grundsätzlich "obere minus untere" Funktion
- Bei der 2. und 3. Art ist zu bedenken, dass in diesem Fall das rechte bestimmte Integral eine negativ Fläche ausweist. Das Vorzeichen dieser negativen Fläche kann auf 2 Arten umgekehrt werden:
- durch ein "minus" oder
- durch den "Betrag"
Anmerkung:
- a, x1 und b sind dabei z.B. die 3 Schittpunkte der beiden Funktionen f(x) und g(x). Damit man das bestimmte Integral berechnen kann, muss man die Schnittpunkte durch Gleichsetzen der beiden Funktionen f(x)=g(x) ermitteln.
- Während a und b auch von Schnittpunkten abweichende Integrationsgrenzen sein können, ist bei einander schneidenden Funktionen x1 auf jeden Fall ein Schnittpunkt.
\(\eqalign{ & A = \int\limits_a^{{x_1}} {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx + \int\limits_{{x_1}}^b {\left[ {g\left( x \right) - f\left( x \right)} \right]} } \,\,dx = \cr & A = \int\limits_a^{{x_1}} {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx - \int\limits_{{x_1}}^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx = \cr & A = \left| {\int\limits_a^{{x_1}} {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx} \right| + \left| {\int\limits_{{x_1}}^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx} \right| \cr} \)
Bestimmtes Integral - Schwertpunkt von Flächen
Das bestimmte Integral ermöglicht es, den Schwerpunkt von Flächen zu berechnen, die von einem oder mehreren Funktionsgraphen und/oder einer Koordinantenachse begrenzt werden.
Bestimmtes Integral - Schwerpunkt der Fläche zwischen Graph und x-Achse
Die x- und y-Koodinaten vom Schwerpunkt einer Fläche, zwischen Graph und x-Achse einerseits und einer unteren und einer oberen Grenze andererseits, können mit Hilfe der Integralrechnung berechnet werden.
\(\eqalign{ & {S_x} = \dfrac{{\int\limits_a^b {x \cdot f\left( x \right)\,\,dx} }}{{\int\limits_a^b {f\left( x \right)\,\,dx} }} = \dfrac{{\int\limits_a^b {x \cdot y\,\,dx} }}{{\int\limits_a^b {y\,\,dx} }} \cr & {S_y} = \dfrac{1}{2} \cdot \dfrac{{\int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}\,\,dx} }}{{\int\limits_a^b {f\left( x \right)\,\,dx} }} = \dfrac{1}{2}.\dfrac{{\int\limits_a^b {{y^2}\,\,dx} }}{{\int\limits_a^b {y\,\,dx} }} \cr}\)
Bestimmtes Integral - Schwerpunkt der Fläche zwischen 2 Graphen, die sich im Intervall [a,b] nicht schneiden
Die x- und y-Koordinaten vom Schwerpunkt einer Fläche, zwischen zwei Graphen f(x) und g(x) einerseits und einer unteren und einer oberen Grenze andererseits, können mit Hilfe der Integralrechnung berechnet werden.
\(\eqalign{ & {S_x} = \dfrac{{\int\limits_a^b {x \cdot \left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx} }}{{\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx} }} \cr & {S_y} = \dfrac{1}{2} \cdot \dfrac{{\int\limits_a^b {\left[ {{f^2}\left( x \right) - {g^2}\left( x \right)} \right]} \,\,dx}}{{\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx} }} \cr}\)
Die Integrationsgrenzen a, b selbst dürfen natürlich mit einem oder beiden Schnittpunkten der Funktionen f(x) und g(x) zusammenfallen.
Die Gültigkeit obiger Formeln - dass sich die Funktionen im Intervall [a,b] nicht schneiden dürfen - hat folgenden Hintergrund:
- In die Berechnung vom Schwerpunkt geht die Berechnung der Fläche mit ein und für deren Berechnung gilt grundsätzlich "obere Funktion" minus "untere Funktion".
- Wenn die Funktionen f(x) und g(x) einander aber schneiden, dann kehrt sich "oben" und "unten" für jede der beiden Funktionen ab dem Schnittpunkt um. Es liegt keine "einteilige Fläche" mehr vor. Das müsste bei der Flächen- und folglich bei der Schwerpunktberechnung gesondert berücksichtigt werden. In diesem Zusammenhang sei auf den Satz von Steiner hingewiesen, mit dessen Hilfe man das Flächenträgheitsmoment von zusammengesetzten Flächen berechnen kann.
Bestimmtes Integral - Rotationskörper
Das bestimmte Integral ermöglicht es, die Mantelfläche und das Volumen von Rotationskörpern zu berechnen, die durch die Rotation einer Funktion um eine Koordinatenachse entstehen.
Bestimmtes Integral - Mantelfläche eines Rotationskörpers
Es sei y=f(x) eine über dem Intervall [a,b] stetige Funktion. Dann beträgt die Mantelfläche des Körpers, der durch Rotation der Funktion um die x-Achse entsteht Mx, bzw. sei die Mantelfläche bei Rotation der Funktion um die y-Achse My.
Bei Rotation um die x-Achse:
\({M_x} = 2\pi \int\limits_{x = a}^b {f\left( x \right) \cdot \sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} \,\,dx = } 2\pi \int\limits_{x = a}^b {y \cdot \sqrt {1 + {{\left( {y'} \right)}^2}} \,\,dx}\)
Bei Rotation um die y-Achse:
\({M_y} = 2\pi \int\limits_{\min \left[ {f\left( a \right),f\left( b \right)} \right]}^{\max \left[ {f\left( 1 \right),f\left( b \right)} \right]} {x \cdot \sqrt {1 + {{\left( {x'} \right)}^2}} \,\,dy}\)
Bestimmtes Integral - Volumen eines Rotationskörpers
Es sei y=f(x) eine über dem Intervall [a,b] stetige Funktion. Dann ist das Volumen des Körpers, der durch Rotation der Funktion um die x-Achse entsteht Vx, bzw. das Volumen bei Rotation der Funktion um die y-Achse sei Vy.
Bei Rotation um die x-Achse:
\({V_x} = \pi \int\limits_{x = a}^b {{{\left[ {f\left( x \right)} \right]}^2}\,\,dx = \pi \int\limits_a^b {{y^2}\,\,dx} }\)
Bei Rotation um die y-Achse:
\({V_y} = \pi \int\limits_{y = c}^d {{{\left[ {x \left( y \right)} \right]}^2}\,\,dy}\)
Anmerkung: Da Funktionen üblicher Weise als y=f(x) gegeben sind, muss man in diesen Fällen die Funktionsgleichung so umformen, dass x2 explizit wird.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.