Mathematik Zentralmatura BHS - Mai 2018 - kostenlos vorgerechnet
Die Beispiele aus diesem BHS Maturatermin werden vorgerechnet und verständlich erklärt.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4066
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fallschirmsprung - Aufgabe A_261
Teil a
In den ersten Sekunden nach dem Absprung gilt für den Fallschirmspringer annähernd das Fallgesetz:
\(s\left( t \right) = \dfrac{g}{2} \cdot {t^2}\)
t | Zeit nach dem Absprung in s |
s(t) | Fallstrecke zur Zeit t in m |
g | Erdbeschleunigung, g = 9,81 m/s2 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie mithilfe des Fallgesetzes die Geschwindigkeit des Fallschirmspringers 1,5 Sekunden nach dem Absprung.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4067
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fallschirmsprung - Aufgabe A_261
Teil b
Bei einem Fallschirmsprung wurde der zeitliche Verlauf der Geschwindigkeit eines Fallschirmspringers aufgezeichnet. Im nachstehenden Diagramm wird diese Geschwindigkeit für die ersten 80 Sekunden nach dem Absprung veranschaulicht.
55 Sekunden nach dem Absprung zieht der Fallschirmspringer die Reisleine, der Fallschirm öffnet sich.
1. Teilaufgabe - Bearbeitungszeit 5:40
Schätzen Sie den Flächeninhalt zwischen der Geschwindigkeitskurve und der Zeitachse im Intervall [0 s; 55 s] ab.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung dieses Flächeninhalts im gegebenen Sachzusammenhang unter Angabe der entsprechenden Einheit.
[1 Punkt]
Aufgabe 4068
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fallschirmsprung - Aufgabe A_261
Teil c
Der Höhenmesser des Fallschirmspringers zeigt 60 Sekunden nach dem Absprung eine Meereshöhe von 1 300 Metern an. Ab dieser Meereshöhe sinkt der Fallschirmspringer jeweils 100 Meter in 14 Sekunden. Dabei soll die Meereshöhe des Fallschirmspringers (in Metern) in Abhängigkeit von der Zeit t (in Sekunden) durch eine Funktion h beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der Funktion h. Wählen Sie t = 0 für den Zeitpunkt 60 Sekunden nach dem Absprung.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie lange der gesamte Fallschirmsprung (vom Absprung bis zur Landung) dauert.
[1 Punkt]
Aufgabe 4069
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil a
Katharina und Georg arbeiten als Pflegekräfte in einem Heim. Sie bekommen das gleiche monatliche Grundgehalt. Im Februar lag in diesem Heim ein besonderer Arbeitsbedarf vor. Georg leistete 14 Überstunden, Katharina leistete 46 Überstunden. Ihr jeweiliges Gesamtentgelt setzt sich aus dem Grundgehalt und der Abgeltung für die geleisteten Überstunden zusammen. Jede Überstunde wird dabei gleich abgegolten.
Das Gesamtentgelt von Georg betrug im Februar € 2.617, jenes von Katharina betrug € 3.433.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie das Grundgehalt und die Abgeltung für eine Überstunde.
[1 Punkt]
Aufgabe 4070
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil b
Der Aufzug eines Pflegeheims hat eine rechteckige Grundfläche mit einer Länge von 4 m und einer Breite von 2,8 m. Ein Pflegebett fährt auf beweglichen Rollen und hat die Augenmaße 2,4 m × 1,1 m (siehe nachstehende nicht maßstabsgetreue Abbildung).
Abbildung: Aufzug-Innenraum von oben gesehen
1. Teilaufgabe - Bearbeitungszeit 5:40
Überprüfen Sie nachweislich, ob der Aufzug breit genug ist, damit das Bett – wie oben skizziert – um 180° gedreht werden kann.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4071
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil c
Die nachstehende Tabelle zeigt die Anzahl der Hausbesuche pro Jahr durch mobile Dienste im Rahmen der Altenpflege in Oberösterreich sowie deren prozentualen Anstieg jeweils im Vergleich zur Anzahl 2 Jahre davor.
Jahr |
Anzahl der Hausbesuche pro Jahr |
prozentualer Anstieg (gerundet) |
1994 | 498 086 | |
1996 | 589 168 | 18,3 % |
1998 | 802 146 | 36,1 % |
2000 | 1 017 793 | 26,9 % |
2002 | 1 176 665 | 15,6 % |
2004 | 1 360 543 | 15,6 % |
Der prozentuale Anstieg der Anzahl der Hausbesuche pro Jahr betrug sowohl von 2000 auf 2002 als auch von 2002 auf 2004 jeweils rund 15,6 %.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie in Worten, warum sich die absolute Änderung der Anzahl der Hausbesuche pro Jahr von 2000 auf 2002 von jener von 2002 auf 2004 unterscheidet, obwohl die prozentualen Anstiege in den jeweiligen Zeitintervallen gleich sind.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis der Berechnung \(\dfrac{{1360543 - 498086}}{{2004 - 1994}} \approx 86246\) im gegebenen Sachzusammenhang.
[1 Punkt]
Aufgabe 4072
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil d
Eine Rampe der Länge x überwindet 3 Stufen. Jede Stufe hat die Höhe h und die Breite b.
- Aussage 1: \(x = \dfrac{{2 \cdot b}}{{\cos \left( \alpha \right)}}\)
- Aussage 2: \(x = \dfrac{{3 \cdot h \cdot \sin \left( \alpha \right)}}{{2 \cdot b}}\)
- Aussage 3: \(x = \left( {2 \cdot b + y} \right) \cdot tan\left( \alpha \right)\)
- Aussage 4: \(x = \dfrac{{2 \cdot b + y}}{{\cos \left( \alpha \right)}}\)
- Aussage 5: \(x = \dfrac{{3 \cdot h + \sin \left( \alpha \right)}}{{2 \cdot b}}\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf den dargestellten Sachverhalt zutreffende Formel an.
[1 aus 5] [1 Punkt]
Aufgabe 4073
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Die Genussformel - Aufgabe A_263
Teil a
Der Physiker Werner Gruber erklärt in seinem Buch Die Genussformel (Salzburg: Ecowin, 2008) die kleinen chemischen und physikalischen Tricks der großen Köchinnen und Köche. Dabei werden auch mathematische Zusammenhange betrachtet.
In der Genussformel betrachtet Gruber den Genuss beim Essen als messbare Größe mit Werten von 0 (kein Genuss) bis 1 (maximaler Genuss). Für die Abhängigkeit des Genusses von der Anzahl der Geschmacksrichtungen auf einem Teller gibt Gruber folgende Funktion G an:
\(G\left( n \right) = {e^{ - \dfrac{{{{\left( {n - 3} \right)}^2}}}{{0,2746}}}}\)
mit:
n | Anzahl der unterschiedlichen Geschmacksrichtungen auf dem Teller |
G(n) | Genuss bei n unterschiedlichen Geschmacksrichtungen auf dem Teller |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie diejenige Anzahl an unterschiedlichen Geschmacksrichtungen, bei der man laut Gruber den maximalen Genuss hat.
[1 Punkt]
Aufgabe 4074
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Die Genussformel - Aufgabe A_263
Teil b
Für die optimale Bratdauer einer Gans gibt Gruber folgende Werte an:
Masse der Gans in Kilogramm | Bratdauer in Minuten |
2,0 | 104 |
3,0 | 136 |
3,8 | 159 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie mithilfe des Differenzenquotienten, dass zwischen Masse und Bratdauer kein exakter linearer Zusammenhang vorliegt.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4075
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Die Genussformel - Aufgabe A_263
Teil c
Ein Ei einer bestimmten Größe wird gekocht. Der zeitliche Verlauf der Innentemperatur wird mithilfe der Funktion T modelliert:
\(T\left( t \right) = 100 - 192 \cdot {e^{ - \dfrac{{25 \cdot t}}{{81}}}}\) mit \(t \ge 3\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, nach welcher Kochzeit eine Innentemperatur von 84 °C erreicht wird.
[1 Punkt]
Die Potenz \({e^{ - \dfrac{{25 \cdot t}}{{81}}}}\) wird in Wurzelschreibweise und mit positiver Hochzahl dargestellt.
- Aussage 1: \(\dfrac{1}{{\sqrt[{81}]{{{e^{25 \cdot t}}}}}}\)
- Aussage 2: \(\sqrt[{81}]{{{e^{25 \cdot t}}}}\)
- Aussage 3: \( - \sqrt[{81}]{{{e^{25 \cdot t}}}}\)
- Aussage 4: \( - \sqrt[{25}]{{{e^{81 \cdot t}}}}\)
- Aussage 5: \(\dfrac{1}{{\sqrt[{25}]{{{e^{81 \cdot t}}}}}}\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Darstellung an.
[1 aus 5] [1 Punkt]
Aufgabe 4076
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pizzalieferdienst - Aufgabe A_264
Teil a
Eine Pizzeria liefert Pizzen auf Bestellung aus. Die Kunden sollen möglichst schnell beliefert werden, damit die Pizzen bei der Zustellung noch heiß sind. Für 100 Pizzen wurden die Zustellzeiten erhoben und in 6 Klassen eingeteilt:
Klasse | Zustellzeit in Minuten | Klassenmitte | absolute Häufigkeit |
1 | [0; 10[ | 5 | 4 |
2 | [10; 20[ | 15 | 48 |
3 | [20; 30[ | 25 | 27 |
4 | [30; 40[ | 35 | 11 |
5 | [40; 50[ | 45 | 5 |
6 | [50; 60[ | 55 | 5 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Geben Sie an, in welcher Klasse der Median der Zustellzeiten liegt.
[1 Punkt]
Mithilfe der Klassenmitten können das arithmetische Mittel \(\overline x \) und die Standardabweichung s der Zustellzeiten näherungsweise berechnet werden. Es gilt: \(\overline x \) = 23 min
- Aussage 1: \(\sqrt {\dfrac{{\left( {5 - 23} \right) + \left( {15 - 23} \right) + \left( {25 - 23} \right) + \left( {35 - 23} \right) + \left( {45 - 23} \right) + \left( {55 - 23} \right)}}{6}} \)
- Aussage 2: \(\sqrt {\dfrac{{{{\left( {5 - 23} \right)}^2} + {{\left( {15 - 23} \right)}^2} + {{\left( {25 - 23} \right)}^2} + {{\left( {35 - 23} \right)}^2} + {{\left( {45 - 23} \right)}^2} + {{\left( {55 - 23} \right)}^2}}}{6}} \)
- Aussage 3: \(\sqrt {\dfrac{{{{\left( {5 - 23} \right)}^2} \cdot 4 + {{\left( {15 - 23} \right)}^2} \cdot 48 + {{\left( {25 - 23} \right)}^2} \cdot 27 + {{\left( {35 - 23} \right)}^2} \cdot 11 + {{\left( {45 - 23} \right)}^2} \cdot 5 + {{\left( {55 - 23} \right)}^2} \cdot 5}}{6}} \)
- Aussage 4: \(\sqrt {\dfrac{{{{\left( {5 - 23} \right)}^2} \cdot 4 + {{\left( {15 - 23} \right)}^2} \cdot 48 + {{\left( {25 - 23} \right)}^2} \cdot 27 + {{\left( {35 - 23} \right)}^2} \cdot 11 + {{\left( {45 - 23} \right)}^2} \cdot 5 + {{\left( {55 - 23} \right)}^2} \cdot 5}}{{100}}} \)
- Aussage 5: \(\sqrt {\dfrac{{{{\left( {5 - 23} \right)}^2} \cdot 5 + {{\left( {15 - 23} \right)}^2} \cdot 15 + {{\left( {25 - 23} \right)}^2} \cdot 25 + {{\left( {35 - 23} \right)}^2} \cdot 35 + {{\left( {45 - 23} \right)}^2} \cdot 45 + {{\left( {55 - 23} \right)}^2} \cdot 55}}{{100}}} \)
2. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie denjenigen Ausdruck an, mit dem die zugehörige Standardabweichung s der Zustellzeiten berechnet werden kann.
[1 aus 5] [1 Punkt]
Aufgabe 4077
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Pizzalieferdienst - Aufgabe A_264
Teil b
Bei einer statistischen Erhebung wurde die Temperatur der gelieferten Pizzen untersucht. Die erhobenen Daten sind im folgenden Boxplot dargestellt:
Es wird auf Basis dieses Boxplots behauptet: „Mindestens 80 % der gelieferten Pizzen haben eine Temperatur von über 45 °C.“
1. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie anhand des obigen Boxplots, dass diese Behauptung falsch ist.
[1 Punkt]