AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 1.8
Aufgaben zum Inhaltsbereich FA 1.8: Durch Gleichungen (Formeln) gegebene Funktionen mit mehreren Veränderlichen im Kontext deuten können, Funktionswerte ermitteln können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.8
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.8: Durch Gleichungen (Formeln) gegebene Funktionen mit mehreren Veränderlichen im Kontext deuten können, Funktionswerte ermitteln können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgaben
Aufgabe 1620
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Pyramide
Die Oberfläche einer regelmäßigen quadratischen Pyramide kann als Funktion O in Abhängigkeit von der Länge der Grundkante a und der Höhe der Seitenfläche h1 aufgefasst werden. Es gilt: \(O\left( {a,{h_1}} \right) = {a^2} + 2 \cdot a \cdot {h_1}\) wobei \(a \in {{\Bbb R}^ + }\) und \({h_1} > \dfrac{a}{2}\)
Aufgabenstellung
Gegeben sind sechs Aussagen zur Oberflache von regelmäßigen quadratischen Pyramiden. Kreuzen Sie die zutreffende Aussage an!
- Aussage 1: Ist h1 konstant, dann ist die Oberflache direkt proportional zu a.
- Aussage 2: Ist a konstant, dann ist die Oberflache direkt proportional zu h1.
- Aussage 3: Für a = 1 cm ist die Oberflache sicher grösser als 2 cm2.
- Aussage 4: Für a = 1 cm ist die Oberflache sicher kleiner als 10 cm2.
- Aussage 5: Werden sowohl a als auch h1 verdoppelt, so wird die Oberflache verdoppelt.
- Aussage 6: Ist h1 = a2, dann kann die Oberfläche durch eine Exponentialfunktion in Abhängigkeit von a beschrieben werden.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1322
AHS - 1_322 & Lehrstoff: FA 1.8
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Drehkegel
Das Volumen eines Drehkegels kann durch eine Funktion V in Abhängigkeit vom Radius r und von der Hohe h folgendermaßen angegeben werden: \(V\left( {r,h} \right) = \dfrac{1}{3} \cdot {r^2} \cdot \pi \cdot h\)
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Das Volumen V(r, h) bleibt unverändert, wenn der Radius r _____1_____ wird und die Hohe h _____2_____ wird.
1 | |
verdoppelt | A |
halbiert | B |
vervierfacht | C |
2 | |
verdoppelt | I |
halbiert | II |
vervierfacht | III |
Aufgabe 1325
AHS - 1_325 & Lehrstoff: FA 1.8
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Masse
Die Masse eines Drehzylinders in Abhängigkeit von seinen Abmessungen r und h und seiner Dichte ρ kann durch die Funktion M mit \(M\left( {r,h,\rho } \right) = \pi \cdot {r^2} \cdot h \cdot \rho \) beschrieben werden. Ein aus Fichtenholz geschnitzter Drehzylinder hat den Durchmesser d = 8 cm und die Hohe h = 6 dm. Die Dichte von Fichtenholz betragt ca. 0,5 g/cm3.
Aufgabenstellung
Geben Sie die Masse des in der Angabe beschriebenen Drehzylinders in Kilogramm an!
Aufgabe 1645
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Volumen eines Drehzylinders
Das Volumen eines Drehzylinders kann als Funktion V der beiden Größen h und r aufgefasst werden. Dabei ist h die Hohe des Zylinders und r der Radius der Grundfläche.
Aufgabenstellung:
Verdoppelt man den Radius r und die Höhe h eines Zylinders, so erhalt man einen Zylinder, dessen Volumen x-mal so groß wie jenes des ursprünglichen Zylinders ist.
Geben Sie x an!
Aufgabe 1717
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schwingung einer Saite
Die Frequenz f der Grundschwingung einer Saite eines Musikinstruments kann mithilfe der nachstehenden Formel berechnet werden.
\(f = \dfrac{1}{{2 \cdot l}} \cdot \sqrt {\dfrac{F}{{\rho \cdot A}}} \)
l | Länge der Saite |
A | Querschnitt der Saite |
\(\rho \) "Rho" | Dichte des Materials der Saite |
F | Kraft, mit der die Saite gespannt ist |
Aufgabenstellung:
Geben Sie an, wie die Lange l einer Saite zu ändern ist, wenn die Saite mit einer doppelt so hohen Frequenz schwingen soll und die anderen Größen (F, ϱ , A) dabei konstant gehalten werden.
[0 / 1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen