AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AN 3.3
Aufgaben zum Inhaltsbereich AN 3.3: Eigenschaften von Funktionen mit Hilfe der Ableitung(sfunktion) beschreiben können: Monotonie, lokale Extrema, Links- und Rechtskrümmung, Wendestellen
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AN 3.3
Ableitungsfunktion/Stammfunktion
AN 3.3: Eigenschaften von Funktionen mit Hilfe der Ableitung(sfunktion) beschreiben können: Monotonie, lokale Extrema, Links- und Rechtskrümmung, Wendestellen
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1013
AHS - 1_013 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lokale Extrema
Von einer Polynomfunktion f dritten Grades sind die beiden lokalen Extrempunkte E1 = (0|–4) und E2 = (4|0) bekannt.
- Aussage 1: \(f\left( 0 \right) = - 4\)
- Aussage 2: \(f'\left( 0 \right) = 0\)
- Aussage 3: \(f\left( { - 4} \right) = 0\)
- Aussage 4: \(f'\left( 4 \right) = 0\)
- Aussage 5: \(f''\left( 0 \right) = 0\)
Aufgabenstellung:
Welche Bedingungen müssen in diesem Zusammenhang erfüllt sein? Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1034
AHS - 1_034 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wendestelle
Ein Becken wird mit Wasser gefüllt. Die in das Becken zufließende Wassermenge, angegeben in m3 pro Stunde, kann im Intervall [0; 8) durch die Funktion f beschrieben werden. Die Funktion f hat an der Stelle t = 4 eine Wendestelle.
- Aussage 1: An der Stelle t = 4 geht die Linkskrümmung (f''(t) > 0) in eine Rechtskrümmung (f''(t) < 0) über.
- Aussage 2: An der Stelle t = 4 geht die Rechtskrümmung (f''(t) < 0) in eine Linkskrümmung (f''(t) > 0) über.
- Aussage 3: Der Wert der zweiten Ableitung der Funktion f an der Stelle 4 ist null.
- Aussage 4: Es gilt f''(t) > 0 für t > 4.
- Aussage 5: Für t > 4 sinkt die pro Stunde zufließende Wassermenge.
Aufgabenstellung:
Kreuzen Sie die für die Funktion f zutreffende(n) Aussage(n) an!
Aufgabe 1182
AHS - 1_182 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungsfunktionen
Die nachstehenden Abbildungen zeigen die Graphen von drei Funktionen f1, f2, f3 im Intervall [0; 160].
- Aussage 1: Die Funktionswerte von f1‘ sind im Intervall [0; 160] negativ.
- Aussage 2: Der Wert des Differenzialquotienten von f3 wächst im Intervall [0; 160] mit wachsendem x.
- Aussage 3: Die Funktion f2‘‘ hat im Intervall (0; 160) genau eine Nullstelle.
- Aussage 4: Die Funktionswerte von f3‘‘ sind im Intervall [0; 160] negativ.
- Aussage 5: Die Funktion f1‘ ist im Intervall [0; 160] streng monoton fallend.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1502
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 16. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 16. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Differenzierbare Funktion
Die nachstehende Abbildung zeigt den Ausschnitt eines Graphen einer Polynomfunktion f. Die Tangentensteigung an der Stelle x = 6 ist maximal.
- Aussage 1: \(f''\left( 6 \right) = 0\)
- Aussage 2: \(f''\left( {11} \right) < 0\)
- Aussage 3: \(f''\left( 2 \right) < f''\left( {10} \right)\)
- Aussage 4: \(f'\left( 6 \right) = 0\)
- Aussage 5: \(f'\left( 7 \right) < f'\left( {10} \right)\)
Aufgabenstellung:
Kreuzen Sie die beiden für die gegebene Funktion f zutreffenden Aussagen an!
Aufgabe 1029
AHS - 1_029 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Funktionen
In der untenstehenden Abbildung ist der Graph einer Funktion f dargestellt. Der Punkt C ist ein Wendepunkt der Funktion f. Die Punkte A und E sind lokale Extrema.
- Aussage 1: \(f''\left( {{x_1}} \right) > 0\)
- Aussage 2: \(f'\left( {{x_2}} \right) > 0\)
- Aussage 3: \(f''\left( {{x_3}} \right) = 0\)
- Aussage 4: \(f'\left( {{x_4}} \right) < 0\)
- Aussage 5: \(f''\left( {{x_5}} \right) > 0\)
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1311
AHS - 1_311 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kostenkehre
In einem Betrieb können die Kosten zur Herstellung eines Produkts in einem bestimmten Intervall näherungsweise durch die Funktion K mit der Gleichung \(K\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\) mit \(a,b,c,d \in {\Bbb R}\) und a > 0 beschrieben werden \(\left( {K\left( x \right){\text{ in € }}{\text{, x in mg}}} \right)\)
Aufgabenstellung
Begründen Sie, warum es bei dieser Modellierung durch eine Polynomfunktion dritten Grades genau eine Stelle gibt, bei der die Funktion von einem degressiven Kostenverlauf in einen progressiven Kostenverlauf übergeht!
Aufgabe 1031
AHS - 1_031 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ableitungsfunktion
In der untenstehenden Abbildung ist der Graph der Ableitungsfunktion f' einer Funktion f dargestellt.
- Aussage 1: Die Funktion f hat im Intervall [–4; 4] drei lokale Extremstellen.
- Aussage 2: Die Funktion f ist im Intervall (2; 3) streng monoton steigend.
- Aussage 3: Die Funktion f hat im Intervall [–3; 0] eine Wendestelle.
- Aussage 4: Die Funktion f'' hat im Intervall [–3; 3] zwei Nullstellen.
- Aussage 5: Die Funktion f hat an der Stelle x = 0 ein lokales Minimum.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1526
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 16. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften der zweiten Ableitung
Gegeben sind die Graphen von fünf reellen Funktionen.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
- Graph 5:
Aufgabenstellung:
Für welche der angegebenen Funktionen gilt f‘‘(x)>0 im Intervall [–1; 1]?
Kreuzen Sie die beiden zutreffenden Graphen an!
Aufgabe 1146
AHS - 1_146 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lokales Maximum
Gegeben ist eine Polynomfunktion f.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Wenn _____1________ ist und _____2______ ist, besitzt die gegebene Funktion f an der Stelle x1 ein lokales Maximum.
1 | |
\(f'\left( {{x_1}} \right) < 0\) | A |
\(f'\left( {{x_1}} \right) = 0\) | B |
\(f'\left( {{x_1}} \right) > 0\) | C |
2 | |
\(f''\left( {{x_1}} \right) < 0\) | I |
\(f''\left( {{x_1}} \right) = 0\) | II |
\(f''\left( {{x_1}} \right) > 0\) | III |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1180
AHS - 1_180 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wachstumsgeschwindigkeit
Das Wachstum einer Bakterienkultur wird durch eine Funktion N beschrieben. Dabei gibt N(t) die Anzahl der Bakterien zum Zeitpunkt t (t in Stunden) an .
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Wenn _____1_____ positiv sind, erfolgt das Bakterienwachstum im Intervall [a; b] ______2______.
1 | |
die Funktionswerte N(t) für t ∈ [a; b] | A |
die Funktionswerte N‘(t) für t ∈ [a; b] | B |
die Funktionswerte N‘‘(t) für t ∈ [a; b] | C |
2 | |
immer schneller | I |
immer langsamer | II |
gleich schnell | III |
Aufgabe 1168
AHS - 1_168 & Lehrstoff: AN 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kennzeichnung von x-Werten
Gegeben ist der Graph einer Polynomfunktion p vierten Grades.
Aufgabenstellung:
Kennzeichnen Sie alle Stellen auf der x-Achse, für die p″(x) = 0 gilt!
Aufgabe 1382
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 16. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Negative erste Ableitung
In der nachstehenden Abbildung ist der Graph einer Funktion f im Intervall [–3; 11] dargestellt. An der Stelle x = 4 hat die Funktion ein lokales Minimum.
Aufgabenstellung:
Geben Sie das Intervall I für diejenigen Stellen x ∈ [–3; 11] an, für die gilt: f ′( x) < 0!
I =