Graph einer Funktion
Jedem Wert auf der x-Achse wird über die Funktion ein Punkt auf der y-Achse zugeordnet. Die Menge aller Punkte mit den Koordinaten (X|Y) bilden eine Kurve in der Gaus`schen Ebene, den sogenannten Graphen der Funktion.
Hier findest du folgende Inhalte
Formeln
Darstellung von Funktionen
Unter einer Funktion versteht man die eindeutige Zuordnung von jedem Element x der Definitionsmenge zu genau einem Element y der Wertemenge. Unter einer reellen Funktion versteht man die Abbildung von reellen Zahlen der Definitionsmenge auf reelle Zahlen der Wertemenge.
\(f:{D_f} \to {W_f}\,\,\,{\text{mit}}\,\,\,x \in {D_f}\,\,\,{\text{und}}\,\,\,y \in {W_f}\)
Es gibt mehrere gängige Schreibweisen für Funktionsgleichungen
\(f:x \to 2{x^3}\)
\(f\left( x \right) = 2{x^3}\)
\(y = 2{x^3}\)
Funktionsgleichung
Unter einer Funktionsgleichung versteht man eine mathematische Vorschrift, die angibt, wie man aus einem gegebenen x-Wert den zugehörigen y-Wert errechnet. Dabei ist y abhängig davon, welchen Wert x man in die Funktionsgleichung einsetzt. Die Funktionsgleichung stellt die Abbildung der Werte aus der Definitionsmenge Df auf die Wertemenge Wf in Form einer Gleichung dar.
\(f:{\Bbb R} \to {\Bbb R};\,\,\,y = f\left( x \right)\)
Daher nennt man
- y die abhängige Variable bzw. den Funktionswert
- x die unabhängige Variable bzw. das Funktionsargument
Typen wichtiger Funktionsgleichungen
Konstante Funktion | \(f\left( x \right) = c\) |
Direkt proportionale Funktion sie sind für d=0 eine Untermenge der linearen Funktionen |
\(f\left( x \right) = k \cdot x\) |
Lineare Funktion | \(f\left( x \right) = k \cdot x + d\) |
Quadratische Funktion (Parabel) | \(f\left( x \right) = a \cdot {x^2} + b \cdot x + c\) |
Indirekt proportionale Funktion (Hyperbel) sie sind für negative n eine Untermenge der Potenzfunktionen |
\(f\left( x \right) = \dfrac{c}{{{x^n}}} = c \cdot {x^{ - n}}\) |
Potenzfunktion | \(f\left( x \right) = c \cdot {x^n}\) |
Wurzelfunktion | \(f\left( x \right) = \root n \of x = {x^{\dfrac{1}{n}}}\) |
Exponentialfunktion | \(\begin{array}{l} f\left( x \right) = c \cdot {a^x}\\ f\left( x \right) = c \cdot {e^x} \end{array}\) |
Logarithmusfunktion | \(f\left( x \right) = {}^a\log x\) |
Periodische Funktion | \(f\left( {x + T} \right) = f\left( x \right)\) |
Polynomfunktion | \(f\left( x \right) = {a_n} \cdot {x^n} + {a_{n - 1}} \cdot {x^{n - 1}} + ... + {a_1} \cdot x + {a_0}\) |
uvm. |
Graph einer Funktion
Jedem Wert auf der x-Achse wird über die Funktion ein Punkt auf der y-Achse zugeordnet. Die Menge aller Punkte einer Funktion f(x) mit den Koordinaten (x|y=f(x)) bilden eine Kurve in der Gaus`schen Ebene, den sogenannten Graphen der Funktion.
\(y = f\left( x \right)\)
Geometrische Darstellung: Trägt man die unabhängige Variable x auf der x-Achse und die abhängige Variable y=f(x) auf der y-Achse auf, erhält man den Graph als eine grafische Darstellung der Funktion in Form einer Kurve.
Wertetabelle einer Funktion
Trägt man in einer 2-spaltigen Tabelle in der 1. Spalte die x-Werte gemäß der Definitionsmenge Df ein und in der 2. Spalte die y=f(x) Werte gemäß der Wertemenge Wf, so erhält man Zahlenpaare, die die Zeilen der Wertetabelle bilden.
x | y=f(x) |
x1 | f(x1) |
x2 | f(x2) |
... | ... |
xi | f(xi) |
Mengendiagramm einer Funktion
Grafische Gegenüberstellung von Definitionsmenge und Wertemenge einer Funktion, wobei die Wertepaare durch Pfeile mit einander verbunden werden
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1413
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Den Graphen einer Polynomfunktion skizzieren
Eine Polynomfunktion f hat folgende Eigenschaften:
- Die Funktion ist für x ≤ 0 streng monoton steigend.
- Die Funktion ist im Intervall [0; 3] streng monoton fallend.
- Die Funktion ist für x ≥ 3 streng monoton steigend.
- Der Punkt P = (0|1) ist ein lokales Maximum (Hochpunkt).
- Die Stelle 3 ist eine Nullstelle.
Aufgabenstellung:
Erstellen Sie anhand der gegebenen Eigenschaften eine Skizze eines möglichen Funktionsgraphen von f im Intervall [–2; 4]!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1245
AHS - 1_245 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Argumente
Gegeben ist der Graph einer reellen Funktion f.
Aufgabenstellung:
Geben Sie alle Argumente \(x \in \left[ { - 3;9} \right]\) an,für die gilt: \({x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)
Aufgabe 1415
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Volumen eines Drehkegels
Das Volumen V eines Drehkegels hangt vom Radius r und der Hohe h ab. Es wird durch die Formel \(V = \dfrac{1}{3} \cdot {r^2} \cdot \pi \cdot h\) beschrieben.
Eine der untenstehenden Abbildungen stellt die Abhängigkeit des Volumens eines Drehkegels vom Radius bei konstanter Höhe dar.
- Aussage 1:
- Aussage 2:
- Aussage 3:
- Aussage 4:
- Aussage 5:
- Aussage 6:
Aufgabenstellung:
Eine der obenstehenden Abbildungen stellt die Abhängigkeit des Volumens eines Drehkegels vom Radius bei konstanter Höhe dar. Kreuzen Sie die entsprechende Abbildung an!
Aufgabe 1135
AHS - 1_135 & Lehrstoff: FA 1.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsgraphen
Gegeben sind die Graphen der Funktionen f, g und h.
- Aussage 1: \(g\left( 1 \right) > g\left( 3 \right)\)
- Aussage 2: \(h\left( 1 \right) > h\left( 3 \right)\)
- Aussage 3: \(f\left( 1 \right) = g\left( 1 \right)\)
- Aussage 4: \(h\left( 1 \right) = g\left( 1 \right)\)
- Aussage 5: \(f\left( 1 \right) < f\left( 3 \right)\)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1253
AHS - 1_253 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph einer Funktion zeichnen
Aufgabenstellung
Zeichnen Sie in das nachstehende Koordinatensystem den Graphen einer linearen Funktion mit der Gleichung \(f\left( x \right) = k \cdot x + d\) ein, für deren Parameter \(k = - \dfrac{2}{3}{\text{ }}\) und \(d > 0\) die Bedingungen gelten!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1254
AHS - 1_254 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph einer Funktion zeichnen
Gegeben sind fünf Abbildungen:
- Aussage 1:
- Aussage 2:
- Aussage 3:
- Aussage 4:
- Aussage 5:
Aufgabenstellung
Welche Abbildungen stellen einen Graphen von einer linearen Funktion dar? Kreuzen Sie die zutreffende(n) Abbildung(en) an!
Aufgabe 1280
AHS - 1_280 & Lehrstoff: FA 6.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsterme finden
Gegeben sind die Graphen der Funktionen f und g.
Aufgabenstellung:
Geben Sie die Funktionsterme der Funktionen f und g an!
Aufgabe 1064
AHS - 1_064 & Lehrstoff: FA 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsgraphen zuordnen
Den vier Gleichungen von Potenzfunktionen stehen nachfolgende sechs Graphen gegenüber.
Deine Antwort | |
\(y = - {x^2} + 2\) | |
\(y = {\left( {x - 2} \right)^2}\) | |
\(y = {\left( {x + 2} \right)^{ - 1}}\) | |
\(y = 2 \cdot {x^{ - 2}}\) |
Zum Weiterlesen bitte ausklappen:
- Graph A:
- Graph B: