Parabel
Hier findest du folgende Inhalte
Formeln
Quadratische Funktionen (Parabeln)
Der Graph einer quadratischen Funktion ist eine Parabel. Die Parabel ist nach oben oder nach unten offen und nach links und rechts unbegrenzt. Der Punkt an dem die Parabel ihr Minimum annimmt heißt Scheitelpunkt. Die y-Achse ist die Symmetrieachse der Parabel. Es handelt sich um eine gerade Funktion, da f(x)=f(-x).
\(f\left( x \right) = a \cdot {x^2}\)
Allgemeine Form der quadratischen Funktion
Die quadratische Funktion setzt sich aus einem quadratischen, einem linearen und einem konstanten Glied zusammen.
- quadratisches Glied: Ist a positiv, so ist die Parabel noch oben offen, ist a negativ, so ist die Parabel nach unten offen. Die rein quadratische Parabel hat ihren Scheitel im Ursprung.
- lineares Glied: Verschiebt den Scheitel der Parabel in Richtung der x- und y-Achse. Die Parabel verläuft aber weiterhin durch den Ursprung
- konstantes Glied: Verschiebt die Parabel in Richtung der y-Achse. Der Parameter c heißt y-Achsenabschnitt der Parabel. Es ist dies der Schnittpunkt der Parabel mit der y-Achse, somit der Punkt \(S\left( {0\left| {{S_y}} \right.} \right)\)
\(f(x) = a \cdot {x^2} + b \cdot x + c\)
Normalform der quadratischen Funktion
Man kann durch Division durch a erzwingen, dass der Parameter a=1 wird. Dann spricht man von der Normalform der quadratischen Funktion.
\(f(x) = {x^2} + p \cdot x + q\)
Nullstellenform der quadratischen Funktion
Die Nullstellenform, auch die faktorisierte Form der quadratischen Funktion genannt, gibt es nur dann wenn die Parabel , also der Graph der quadratischen Funktion, überhaupt die x-Achse schneidet. Die quadratische Funktion in faktorisierter Form weist direkt die Nullstellen x1 bzw. x2 aus. Die Nullstellen der quadratischen Funktion findet man mit der abc Formel, die auch Mitternachtsformel genannt wird (siehe dort).
\(\eqalign{ & f\left( x \right) = a\left( {x - {x_1}} \right) \cdot \left( {x - {x_2}} \right) \cr & {x_{1,2}} = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \cr}\)
Beispiel:
Reinquadratische Funktion in der allgemeinen Form mit a=1 b=0 c=0
Beispiel:
Quadratischen Funktion mit a=1, b=1 und c=0; Durch das lineare Glied, welches einer Geraden durch den Ursprung mit einer Steigung von 45° entspricht, erhalten wir eine nach links und nach unten verschobene Gerade.
Beispiel:
Quadratischen Funktion mit a=1, b=0 und c=1; Durch das konstante Glied c=1 wird der Graph der Funktion um c nach oben verschoben.
Beispiel:
Reinquadratischen Funktion mit a=-1, b=0 und c=0; Wir erhalten eine nach unten offene Normalparabel, was einer Spiegelung um die x-Achse entspricht.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1341
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer quadratischen Funktion
Im nachfolgenden Koordinatensystem ist der Graph einer quadratischen Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb R}\) dargestellt.
Aufgabenstellung:
Ermitteln Sie die Werte der Parameter a und b! Die für die Berechnung relevanten Punkte mit ganzzahligen Koordinaten können dem Diagramm entnommen werden.
a =
b =
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1333
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 17. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnitt zweier Funktionen
Gegeben sind die beiden reellen Funktionen f und g mit den Gleichungen \(f\left( x \right) = {x^2}\) und \(g\left( x \right) = - {x^2} + 8\)
Aufgabenstellung:
Im nachstehenden Koordinatensystem sind die Graphen der beiden Funktionen f und g dargestellt. Schraffieren Sie jene Flache, deren Große A mit \(A = \int\limits_0^1 {g\left( x \right)\,\,dx - \int\limits_0^1 {f\left( x \right)} } \,\,dx\) berechnet werden kann!
Aufgabe 1269
AHS - 1_269 & Lehrstoff: FA 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parabel
Der Graph einer Polynomfunktion zweiten Grades mit \(f\left( x \right) = a \cdot {x^2} + b \cdot x + c\) ist eine Parabel.
- Aussage 1: \(a < 0\)
- Aussage 2: \(a > 0\)
- Aussage 3: \(b = 0\)
- Aussage 4: \(b < 0\)
- Aussage 5: \(c = 0\)
Welche Bedingungen müssen die Koeffizienten a, b und c jedenfalls erfüllen, damit die Parabel (so wie in der Skizze) nach unten offen ist und ihren Scheitel auf der y-Achse hat?
Aufgabenstellung
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1103
AHS - 1_103 & Lehrstoff: FA 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Funktion
Eine quadratische Funktion hat die Funktionsgleichung \(f\left( x \right) = a{x^2} + bx + c{\text{ mit }}a,\,\,b,\,\,c \in \mathbb{R}{\text{ und }}a \ne 0\). Ihr Graph ist eine Parabel.
Eigenschaft A | Der Funktionsgraph hat keine Nullstelle. |
Eigenschaft B | Der Graph hat mindestens einen Schnittpunkt mit der x-Achse. |
Eigenschaft C | Der Scheitelpunkt der Parabel ist ein Hochpunkt. |
Eigenschaft D | Der Scheitelpunkt der Parabel ist ein Tiefpunkt. |
Eigenschaft E | Der Graph der Funktion ist symmetrisch zur x-Achse. |
Eigenschaft F | Der Graph der Funktion ist symmetrisch zur y-Achse. |
Aufgabenstellung:
Ordnen Sie den vorgegebenen Bedingungen für a, b und c die daraus jedenfalls resultierende Eigenschaft (aus A bis F) zu!
Aussage | Deine Antwort |
\(a < 0\) | |
\(a > 0\) | |
\(c = 0\) | |
\(b = 0\) |
Aufgabe 1389
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parabeln zuordnen
Gegeben sind die Graphen von sechs Funktionen f1, f2, f3, f4, f5 und f6 mit der Gleichung \({f_i}\left( x \right) = a \cdot {x^2} + b\) mit \(a,b \in {\Bbb R}{\text{ und }}a \ne 0{\text{ }}\left( {{\text{i von 1 bis 6}}} \right)\).
- Graph 1 der Funktion f1
- Graph 2 der Funktion f2
- Graph 3 der Funktion f3
- Graph 4 der Funktion f4
- Graph 5 der Funktion f5
- Graph 6 der Funktion f6
Aufgabenstellung:
Ordnen Sie den folgenden Eigenschaften / Aussagen (A..D) jeweils den entsprechenden Graphen der dargestellten Funktionen (aus 1 bis 6) zu!
- Aussage A: a < 0 und b < 0
- Aussage B: a < 0 und b > 0
- Aussage C: a > 0 und b < 0
- Aussage D: a > 0 und b > 0
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1367
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Funktion
Eine quadratische Funktion f der Form
\(f\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb R}{\text{ und }}a \ne 0\)
ist gegeben.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
- Aussage 1: Der Graph der Funktion f hat zwei verschiedene reelle Nullstellen, wenn gilt: a > 0 und b < 0.
- Aussage 2: Der Graph der Funktion f mit b = 0 berührt die x-Achse in der lokalen Extremstelle.
- Aussage 3: Der Graph der Funktion f mit b > 0 berührt die x-Achse im Ursprung.
- Aussage 4: Für a < 0 hat der Graph der Funktion f einen Hochpunkt.
- Aussage 5: Für die lokale Extremstelle xs der Funktion f gilt immer: xs = b.
Aufgabe 1716
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Funktion
Gegeben ist eine quadratische Funktion
\(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = a \cdot {x^2} + b \cdot x + c{\text{ wobei }}a,b,c \in {\Bbb R}{\text{ und }}a \ne 0\)
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht.
Wenn ____1____ gilt, so hat die Funktion f auf jeden Fall ____2____ .
- Satzteil 1_1: a<0
- Satzteil 1_2: b=0
- Satzteil 1_3: c>0
- Satzteil 2_1: einen zur senkrechten Achse symmetrischen Graphen
- Satzteil 2_2: zwei reelle Nullstellen
- Satzteil 2_3: ein lokales Minimum