Gleichung 3. Grades
Eine Gleichung in der die Variable in der dritten aber in keiner höheren Potenz vorkommt, heißt Gleichung 3. Grades. Um die drei Lösungen zu bestimmen strebt man an die Gleichung in einen Term zweiten und in einen Term ersten Grades zu zerlegen. Bei Schulaufgaben ist es oft möglich, eine Nullstelle zu erraten.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 1002
AHS - 1_002 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung 3. Grades
Gegeben ist die Gleichung \(4x \cdot \left( {{x^2} - 2x - 15} \right) = 0\)
Aufgabenstellung:
Geben Sie die Lösungen dieser Gleichung an!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4216
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahnen - Aufgabe A_290
Teil b
Bei den meisten Standseilbahnen gibt es in der Mitte der Strecke eine Ausweichstelle, bei der der talwärts fahrende Wagen dem bergwärts fahrenden Wagen ausweichen kann. In der nachstehenden Abbildung ist eine solche Ausweichstelle modellhaft dargestellt.
Der Funktionsgraph von f schließt an den Stellen 0 und 3 knickfrei an die eingezeichneten Geradenstücke an. „Knickfrei“ bedeutet, dass die Funktionen an denjenigen Stellen, an denen ihre Graphen aneinander anschließen, den gleichen Funktionswert und die gleiche Steigung haben. Für die Funktion f gilt:
\(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
x, f(x) … Koordinaten in m
Die Koeffizienten a, b, c und d können mithilfe eines linearen Gleichungssystems berechnet werden. Der Ansatz für zwei der benötigten Gleichungen lautet:
\(\begin{array}{l} Gl.1:\,\,\,27 \cdot a + 9 \cdot b + 3 \cdot c + d = {\rm{Zah}}{{\rm{l}}_1}\\ Gl.2:\,\,\,27 \cdot a + 6 \cdot b + c = {\rm{Zah}}{{\rm{l}}_2} \end{array}\)
1. Teilaufgabe - Bearbeitungszeit 11:20
Vervollständigen Sie mithilfe der obigen Abbildung die beiden Gleichungen, indem Sie jeweils die fehlende Zahl in das dafür vorgesehene Kästchen schreiben. [
2 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung den Wert des Koeffizienten d ab.
[1 Punkt]
Aufgabe 4242
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kühe auf der Weide - Aufgabe A_141
Teil c
Die Körpergröße von Rindern wird durch die sogenannte Widerristhöhe beschrieben. Eine Landwirtin züchtet eine Rinderrasse, für die die Widerristhohe in Abhängigkeit vom Alter modellhaft durch die Funktion h beschrieben wird.
\(h\left( t \right) = 0,0024 \cdot {t^3} - 0,19 \cdot {t^2} + 5,73 \cdot t + 73{\text{ mit }}1 \leqslant t \leqslant 24\)
- t … Alter in Monaten
- h(t) … Widerristhohe eines Rindes im Alter t in cm
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie das Alter, in dem gemäß diesem Modell eine Widerristhohe von 115 cm erreicht wird.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie mithilfe der 2. Ableitung von h nach, dass der Graph von h im gesamten Definitionsbereich [1; 24] negativ gekrümmt ist.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Es gilt: h′(12) ≈ 2,2
Interpretieren Sie den Wert 2,2 im gegebenen Sachzusammenhang. Geben Sie dabei die zugehörige Einheit an.
[1 Punkt]
Aufgabe 4313
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 11. Mai 2015 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganzkörperhyperthermie - Aufgabe A_158
Bei einem Therapieverfahren wird die Körpertemperatur bewusst stark erhöht (künstliches Fieber).
Teil a
Die nachfolgende Grafik dokumentiert näherungsweise den Verlauf des künstlichen Fiebers bei einer solchen Behandlung.
Die Funktion f beschreibt den Zusammenhang zwischen Zeit und Körpertemperatur:
\(f\left( t \right) = - 0,18 \cdot {t^3} + 0,85 \cdot {t^2} + 0,6 \cdot t + 36,6\)
- t ... Zeit in Stunden (h) mit 0 ≤ t ≤ 5
- f(t) ... Körpertemperatur zur Zeit t in °C
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie denjenigen Zeitpunkt, zu dem die Körpertemperatur 37 °C beträgt.
[1 Punkt]