Flächeninhalt - bestimmtes Integral
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 6019
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion
\(h:x \mapsto \dfrac{3}{{{e^{x + 1}} - 1}}{\text{ mit }}{D_h} = \left] { - 1; + \infty } \right[\)
Abbildung 1 zeigt den Graphen Gh von h.
1. Teilaufgabe a.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie anhand des Funktionsterms, dass \(\mathop {\lim }\limits_{x \to + \infty } h\left( x \right) = 0\) gilt.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Zeigen Sie rechnerisch für \(x \in {D_h}\) dass für die Ableitung h‘ von h gilt: \(h'\left( x \right) < 0\)
Gegeben ist ferner die in Dh definierte Integralfunktion
\({H_0} = x \mapsto \int\limits_0^x {h\left( t \right)} \,\,dt\).
3. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr ist: Der Graph von H0 ist streng monoton steigend.
4. Teilaufgabe b.1) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr ist: Der Graph von H0 ist rechts gekrümmt
5. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Nullstelle von H0 an.
6. Teilaufgabe c.2) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie näherungsweise mithilfe der Abbildung die Funktionswerte H0 (-0,5) sowie H0 (3) .
7. Teilaufgabe c.3) 2 BE - Bearbeitungszeit: 4:40
Skizzieren Sie in der Abbildung den Graphen von H0 im Bereich \( - 0,5 \leqslant x \leqslant 3\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6021
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Der Graph Gf einer in \({\Bbb R}\) definierten Funktion
\(f:x \mapsto a \cdot {x^4} + b \cdot {x^3}{\text{ mit }}a,b \in {\Bbb R}\)
Punkt O(0 | 0) einen Wendepunkt mit waagrechter Tangente.
W(1| -1) ist ein weiterer Wendepunkt von Gf .
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie mithilfe dieser Information die Werte von a und b.
2. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie Lage und Art des Extrempunkts von Gf .
Die Gerade g schneidet Gf in den Punkten W und (2 | 0).
3. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Zeichnen Sie unter Berücksichtigung der bisherigen Ergebnisse Gf sowie die Gerade g in ein Koordinatensystem ein.
4. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Gleichung der Geraden g an.
Gf und die x-Achse schließen im IV. Quadranten ein Flächenstück ein, das durch die Gerade g in zwei Teilflächen zerlegt wird.
5. Teilaufgabe d) 6 BE - Bearbeitungszeit: 14:00
Berechnen Sie das Verhältnis der Flächeninhalte dieser beiden Teilflächen.
Aufgabe 1404
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 18. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Integral einer Funktion f
Die nachstehende Abbildung zeigt den Graphen der Polynomfunktion f. Alle Nullstellen sind ganzzahlig. Die Fläche, die vom Graphen der Funktion f und der x-Achse begrenzt wird, ist schraffiert dargestellt. A bezeichnet die Summe der beiden schraffierten Flächeninhalte.
Aufgabenstellung:
Geben Sie einen korrekten Ausdruck für A mithilfe der Integralschreibweise an!
A =
Aufgabe 1751
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 18. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bestimmte Integrale
Nachstehend ist der Graph einer Polynomfunktion f mit den Nullstellen \({x_1} = - 1;\,\,\,\,\,{x_2} = 0;\,\,\,\,\,{x_3} = 2;\,\,\,\,\,{x_4} = 4\) dargestellt. Für die mit A1, A2 und A3 gekennzeichneten Flächeninhalte gilt: A1 = 0,4; A2 = 1,5 und A3 = 3,2.
Aufgabenstellung
Kreuzen Sie die beiden Gleichungen an, die wahre Aussagen sind. [0 / 1 Punkt]
- Aussage 1: \(\int\limits_{ - 1}^2 {f\left( x \right)} \,\,dx = 1,9\)
- Aussage 2: \(\int\limits_0^4 {f\left( x \right)} \,\,dx = 1,7\)
- Aussage 3: \(\int\limits_{ - 1}^4 {f\left( x \right)} \,\,dx = 5,1\)
- Aussage 4: \(\int\limits_0^2 {f\left( x \right)} \,\,dx = 1,5\)
- Aussage 5: \(\int\limits_2^4 {f\left( x \right)} \,\,dx = 3,2\)
Aufgabe 1500
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 18. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Halbierung einer Fläche
Gegeben ist die reelle Funktion f mit \(f\left( x \right) = {x^2}\)
Aufgabenstellung:
Berechnen Sie die Stelle b so, dass die Fläche zwischen der x-Achse und dem Graphen der Funktion f im Intervall [2; 4] in zwei gleich große Flächen A1 und A2 geteilt wird (siehe Abbildung)!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1524
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 18. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Tachograph
Mithilfe eines Tachographen kann die Geschwindigkeit eines Fahrzeugs in Abhängigkeit von der Zeit aufgezeichnet werden. Es sei v(t) die Geschwindigkeit zum Zeitpunkt t. Die Zeit wird in Stunden (h) angegeben, die Geschwindigkeit in Kilometern pro Stunde (km/h). Ein Fahrzeug startet zum Zeitpunkt t= 0.
Aufgabenstellung:
Geben Sie die Bedeutung der Gleichung \(\int\limits_0^{0,5} {v(t)} \,dt = 40\) unter Verwendung der korrekten Einheiten im gegebenen Kontext an!
Aufgabe 1380
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 18. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Integral
In der nachstehenden Abbildung ist der Graph einer punktsymmetrischen Funktion f (das bedeutet: f(–x) = –f(x) dargestellt. Die Fläche zwischen dem Graphen der Funktion f und der x-Achse im Intervall [0; 3] ist rot unterlegt. Ihre Maßzahl beträgt 6,75.
- Aussage 1: \(\int\limits_0^3 {f\left( x \right)} \,\,dx = 6,75\)
- Aussage 2: \(\int\limits_{ - 3}^3 {f\left( x \right)} \,\,dx = 13,5\)
- Aussage 3: \(\int\limits_{ - 3}^3 {f\left( x \right)} \,\,dx = - 13,5\)
- Aussage 4: \(\int\limits_{ - 3}^3 {f\left( x \right)} \,\,dx = 0\)
- Aussage 5: \(\int\limits_{ - 3}^0 {f\left( x \right)} \,\,dx = 6,75\)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Gleichungen an!
Aufgabe 1096
AHS - 1_096 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Begrenzung einer Fläche
Der Inhalt derjenigen Fläche, die vom Graphen der Funktion \(f:x \to {x^2}\) , der positiven x-Achse und der Geraden mit der Gleichung x = a (a ∈ ℝ) eingeschlossen wird, beträgt 72 Flächeneinheiten.
Aufgabenstellung:
Berechnen Sie den Wert a!
Aufgabe 1525
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 17. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flächeninhalt
Abgebildet ist ein Ausschnitt des Graphen der Polynomfunktion f mit \(f(x) = - \dfrac{{{x^3}}}{8} + 2 \cdot x.\) Die Fläche zwischen dem Graphen der Funktion f und der x-Achse im Intervall [–2; 2] ist grau markiert.
Aufgabenstellung:
Berechnen Sie den Inhalt der grau markierten Fläche!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1060
AHS - 1_060 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bestimmte Integrale
Gegeben ist die Funktion \(f\left( x \right) = - {x^2} + 2x\)
Die nachstehende Tabelle zeigt Integrale
A | \(2 \cdot \int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx}\) |
B | \(\int\limits_1^3 {\left( { - {x^2} + 2x} \right)} \,\,dx\) |
C | \(\int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx + \left| {\int\limits_2^3 {\left( { - {x^2} + 2x} \right)\,\,dx} } \right|}\) |
D | \(\int\limits_0^1 {\left( { - {x^2} + 2x} \right)\,\,\operatorname{dx} - \int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx} } \) |
E | \(\left| {\int\limits_2^3 {\left( { - {x^2} + 2x} \right)\,\,dx} } \right|\) |
F | \(\int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx}\) |
Die nachstehende Tabelle zeigt Graphen der Funktion mit unterschiedlich schraffierten Flächenstücken.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Beurteilen Sie, ob die obenstehend angeführten Integrale (aus A bis F) den Flächeninhalt einer der markierten Flächen der Graphen (1 bis 4) ergeben, und ordnen Sie entsprechend zu!
Deine Antwort | |
Graph 1 | |
Graph 2 | |
Graph 3 | |
Graph 4 |
Aufgabe 1183
AHS - 1_183 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flächenberechnung
Die Summe A der Inhalte der beiden von den Graphen der Funktionen f und g eingeschlossenen Flächen soll berechnet werden.
- Aussage 1: \(A = \int\limits_1^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx\)
- Aussage 2: \(A = \int\limits_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx + \int\limits_3^8 {\left[ {g\left( x \right) - f\left( x \right)} \right]} } \,\,dx\)
- Aussage 3: \(A = \left| {\int\limits_1^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx} } \right|\)
- Aussage 4: \(A = \int\limits_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx - \int\limits_3^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx\)
- Aussage 5: \(A = \left| {\int\limits_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx} \right| + \left| {\int\limits_3^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx} \right|\)
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Formel(n) an!
Aufgabe 1333
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 17. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnitt zweier Funktionen
Gegeben sind die beiden reellen Funktionen f und g mit den Gleichungen \(f\left( x \right) = {x^2}\) und \(g\left( x \right) = - {x^2} + 8\)
Aufgabenstellung:
Im nachstehenden Koordinatensystem sind die Graphen der beiden Funktionen f und g dargestellt. Schraffieren Sie jene Flache, deren Große A mit \(A = \int\limits_0^1 {g\left( x \right)\,\,dx - \int\limits_0^1 {f\left( x \right)} } \,\,dx\) berechnet werden kann!