AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 6.3
Aufgaben zum Inhaltsbereich FA 6.3: Die Wirkung der Parameter a und b gemäß f(x) = a ∙ sin(b ∙ x) kennen und die Parameter im Kontext deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 6.3
Sinusfunktion, Cosinusfunktion
FA 6.3: Die Wirkung der Parameter a und b gemäß f(x) = a ∙ sin(b ∙ x) kennen und die Parameter im Kontext deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgaben
Aufgabe 1283
AHS - 1_283 & Lehrstoff: FA 6.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Atemzyklus
Der Luftstrom beim Ein- und Ausatmen einer Person im Ruhezustand ändert sich in Abhängigkeit von der Zeit nach einer Funktion f. Zum Zeitpunkt t = 0 beginnt ein Atemzyklus. f ( t) ist die bewegte Luftmenge in Litern pro Sekunde zum Zeitpunkt t in Sekunden und wird durch die Gleichung \(f\left( t \right) = 0,5 \cdot \sin \left( {0,4 \cdot \pi \cdot t} \right)\) festgelegt.
(Datenquelle: Timischl, W. (1995). Biomathematik: Eine Einführung für Biologen und Mediziner. 2. Auflage. Wien u. a.: Springer.)
Aufgabenstellung
Berechnen Sie die Dauer eines gesamten Atemzyklus!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1338
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Im untenstehenden Diagramm sind die Graphen zweier Funktionen f und g dargestellt.
Die Funktion f hat die Funktionsgleichung \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) mit den reellen Parametern a und b. Wenn diese Parameter in entsprechender Weise verändert werden, erhält man die Funktion g.
Aufgabenstellung:
Wie müssen die Parameter a und b verändert werden, um aus f die Funktion g zu erhalten? Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Um den Graphen von g zu erhalten, muss a ___1___ und b ___2___ .
1 | |
verdoppelt werden | A |
halbiert werden | B |
gleich bleiben | C |
2 | |
verdoppelt werden | I |
halbiert werden | II |
gleich bleiben | III |
Aufgabe 1625
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 12. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Für \(a,b \in {{\Bbb R}^ + }\) sei die Funktion \(f:{\Bbb R} \to {\Bbb R}\) mit \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) für \(x \in {\Bbb R}\) gegeben. Die beiden nachstehenden Eigenschaften der Funktion f sind bekannt:
- Die (kleinste) Periode der Funktion f ist π.
- Die Differenz zwischen dem größten und dem kleinsten Funktionswert von f beträgt 6.
Aufgabenstellung
Geben Sie a und b an!
- a =
- b =
Aufgabe 1386
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter der Schwingungsfunktionen
Die unten stehende Abbildung zeigt die Graphen von zwei Funktionen f und g, deren Gleichungen den Funktionsterm \(a \cdot \sin \left( {b \cdot x} \right)\) haben \(a,b \in {{\Bbb R}^ + }\backslash \left\{ 0 \right\}\). Dabei wird a als Amplitude und b als Kreisfrequenz bezeichnet.
- Aussage 1: Die Amplitude von g ist dreimal so groß wie die Amplitude von f.
- Aussage 2: Wurde man die Kreisfrequenz von f verdreifachen, so wäre der neue Graph mit jenem von g deckungsgleich.
- Aussage 3: Die Kreisfrequenz von f beträgt 1.
- Aussage 4: Die Kreisfrequenz von g ist doppelt so groß wie die Kreisfrequenz von f.
- Aussage 5: Eine Veränderung des Parameters a bewirkt eine Verschiebung des Graphen der Funktion in senkrechter Richtung.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1066
AHS - 1_066 & Lehrstoff: FA 6.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wirkung der Parameter einer Sinusfunktion
Gegeben ist eine Sinusfunktion der Art \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\). Dabei beeinflussen die Parameter a und b das Aussehen des Graphen von f im Vergleich zum Graphen von \(g\left( x \right) = \sin \left( x \right)\)
A | Dehnung des Graphen der Funktion entlang der x-Achse auf das Doppelte |
B | Phasenverschiebung um 2 |
C | Doppelte Frequenz |
D | Streckung entlang der y-Achse auf das Doppelte |
E | Halbe Amplitude |
F | Verschiebung entlang der y-Achse um –2 |
Aufgabenstellung:
Ordnen Sie den Parameterwerten die entsprechenden Auswirkungen (aus A bis F) auf das Aussehen von f im Vergleich zu g zu!
Deine Antwort | |
\(a = 2\) | |
\(a = \dfrac{1}{2}\) | |
\(b = 2\) | |
\(b = \dfrac{1}{2}\) |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1458
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer Sinusfunktion
Die nachstehende Abbildung zeigt den Graphen der Funktion s mit der Gleichung \(s\left( x \right) = c \cdot \sin \left( {d \cdot x} \right)\) mit \(c,d \in {{\Bbb R}^ + }\) im Intervall \(\left[ { - 2\pi ;2\pi } \right]\)
Aufgabenstellung:
Erstellen Sie im obigen Koordinatensystem eine Skizze eines möglichen Funktionsgraphen der Funktion s1 mit \({s_1}\left( x \right) = 2c \cdot \sin \left( {2d \cdot x} \right)\) im Intervall \(\left[ { - 2\pi ;2\pi } \right]\)
Aufgabe 1109
AHS - 1_109 & Lehrstoff: FA 6.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Negative Sinusfunktion
Gegeben ist der Graph der Funktion \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Zeichnen Sie in die gegebene Abbildung den Graphen der Funktion \(h\left( x \right) = - \sin \left( x \right)\)
Aufgabe 1745
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Gegeben ist eine Funktion \(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = a \cdot \sin \left( {\dfrac{{\pi \cdot x}}{b}} \right){\text{ mit }}a,b \in {R^ + }\)
Aufgabenstellung
Ergänzen Sie in der nachstehenden Abbildung a und b auf der jeweils entsprechenden Achse so, dass der abgebildete Graph dem Graphen der Funktion f entspricht. [0 / 1 Punkt]
Aufgabe 1434
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Gegeben sind die Graphen von vier Funktionen der Form \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\)mit \(a,\,\,b \in {\Bbb R}\)
A | \(\sin \left( x \right)\) |
B | \(1,5 \cdot \sin \left( x \right)\) |
C | \(\sin \left( {0,5x} \right)\) |
D | \(1,5 \cdot \sin \left( {2x} \right)\) |
E | \(2 \cdot \sin \left( {0,5x} \right)\) |
F | \(2 \cdot \sin \left( {3x} \right)\) |
Aufgabenstellung:
Ordnen Sie jedem Graphen den dazugehörigen Funktionsterm (aus A bis F) zu!
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Deine Antwort | |
Graph 1 | |
Graph 2 | |
Graph 3 | |
Graph 4 |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Aufgabe 1108
AHS - 1_108 & Lehrstoff: FA 6.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Variation einer trigonometrischen Funktion
Gegeben ist der Graph der Funktion \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Zeichnen Sie in die gegebene Abbildung den Graphen der Funktion \(g\left( x \right) = \sin \left( {2x} \right)\) ein!
Aufgabe 1107
AHS - 1_107 & Lehrstoff: FA 6.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trigonometrische Funktion
Gegeben ist der Graph der Funktion \(f\left( x \right) = \sin \left( x \right)\)
Aufgabenstellung:
Zeichnen Sie in die gegebene Abbildung den Graphen der Funktion \(g\left( x \right) = 2 \cdot \sin \left( x \right)\) ein!
Aufgabe 1697
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 08. Mai 2019 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen zweier Winkelfunktionen
Die nachstehende Abbildung zeigt die Graphen der Funktionen
\(\eqalign{ & {f_1}:{\Bbb R} \to {\Bbb R} \cr & {f_2}:{\Bbb R} \to {\Bbb R} \cr & {f_1}\left( x \right) = {a_1} \cdot \sin \left( {{b_1} \cdot x} \right) \cr & {f_2}\left( x \right) = {a_2} \cdot \sin \left( {{b_2} \cdot x} \right) \cr & {\text{mit }}{a_1},{a_2},{b_1},{b_2} > 0 \cr} \)
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Für die Parameterwerte gilt ____1_____ und _____2______ .
- Satzteil 1_1: \({a_2} < {a_1}\)
- Satzteil 1_2: \({a_1} \leqslant {a_2} \leqslant 2 \cdot {a_1}\)
- Satzteil 1_3: \({a_2} > 2 \cdot {a_1}\)
- Satzteil 2_1: \({b_2} < {b_1}\)
- Satzteil 2_2: \({b_1} \leqslant {b_2} \leqslant 2 \cdot {b_1}\)
- Satzteil 2_3: \({b_2} > 2 \cdot {b_1}\)