AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 2.3
Aufgaben zum Inhaltsbereich FA 2.3: Die Wirkung der Parameter k und d kennen und die Parameter in unterschiedlichen Kontexten deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 2.3
Lineare Funktion
\(f\left( x \right) = k \cdot x + d\)
FA 2.3: Die Wirkung der Parameter k und d kennen und die Parameter in unterschiedlichen Kontexten deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgaben
Aufgabe 1119
AHS - 1_119 & Lehrstoff: FA 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameter einer linearen Funktion
Der Verlauf einer linearen Funktion f mit der Gleichung \(f\left( x \right) = k \cdot x + d\) wird durch ihre Parameter k und d mitbestimmt.
Aufgabenstellung:
Zeichnen Sie den Graphen einer linearen Funktion \(f\left( x \right) = k \cdot x + d\) für deren Parameter k und d die Bedingungen \(k = \dfrac{2}{3};\,\,\,d < 0\) gelten, in das Koordinatensystem ein!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1509
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 9. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsgleichung einer linearen Funktion
Gegeben ist eine lineare Funktion f mit folgenden Eigenschaften:
- Wenn das Argument x um 2 zunimmt, dann nimmt der Funktionswert f(x) um 4 ab.
- f(0)=1
Aufgabenstellung:
Geben Sie eine Funktionsgleichung dieser linearen Funktion an
Aufgabe 1259
AHS - 1_259 & Lehrstoff: FA 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Funktion
Die Gerade g ist sowohl durch ihren Graphen als auch durch ihre Gleichung \(y = \dfrac{3}{2} \cdot x - 3\) festgelegt. Außerdem ist ein Steigungsdreieck eingezeichnet, allerdings fehlt die x-Achse.
Aufgabenstellung:
Zeichnen Sie die x-Achse so ein, dass die dargestellte Gerade die gegebene Gleichung hat!
Aufgabe 1390
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wasserkosten
Die monatlichen Wasserkosten eines Haushalts bei einem Verbrauch von x m3 Wasser können durch eine Funktion K mit der Gleichung \(K\left( x \right) = a + b \cdot x\) mit a, b ∈ ℝ+ beschrieben werden.
Aufgabenstellung:
Erklären Sie, welche Bedeutung die Parameter a und b in diesem Zusammenhang haben!
Aufgabe 1573
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wert eines Gegenstandes
Der Wert eines bestimmten Gegenstandes t Jahre nach der Anschaffung wird mit W(t) angegeben und kann mithilfe der Gleichung \(W\left( t \right) = - k \cdot t + d{\rm{ }}\left( {k,d \in \Bbb R {^ + }} \right)\)berechnet werden ( W(t) in Euro ).
Aufgabenstellung:
Geben Sie die Bedeutung der Parameter k und d im Hinblick auf den Wert des Gegenstandes an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1062
AHS - 1_062 & Lehrstoff: FA 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aussagen über lineare Funktionen
Betrachten Sie die lineare Funktion \(f\left( x \right) = k \cdot x + d\)
- Aussage 1: Jede lineare Funktion mit k = 0 schneidet jede Koordinatenachse mindestens einmal.
- Aussage 2: Jede lineare Funktion mit d ≠ 0 hat genau eine Nullstelle.
- Aussage 3: Jede lineare Funktion mit d = 0 und k ≠ 0 lässt sich als direktes Verhältnis interpretieren.
- Aussage 4: Der Graph einer linearen Funktion mit k = 0 ist stets eine Gerade.
- Aussage 5: Zu jeder Geraden im Koordinatensystem lässt sich eine lineare Funktion aufstellen.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen betreffend lineare Funktionen dieser Form an!
Aufgabe 1153
AHS - 1_153 & Lehrstoff: FA 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zeit-Weg-Diagramm, Geschwindigkeiten
Das folgende Zeit-Weg-Diagramm stellt eine Bewegung dar. Der Weg wird in Metern (m), die Zeit in Sekunden (s) gemessen. Zur Beschreibung dieser Bewegung sind zudem verschiedene Geschwindigkeiten (vx) gegeben.
A | \({v_A} = 0\dfrac{m}{s}\) |
B | \({v_B} = 5\dfrac{m}{s}\) |
C | \({v_C} = 10\dfrac{m}{s}\) |
D | \({v_D} = 20\frac{m}{s}\) |
E | \({v_E} = 25\dfrac{m}{s}\) |
F | \({v_F} = 50\dfrac{m}{s}\) |
Aufgabenstellung:
Ordnen Sie jeweils jedem Zeitintervall jene Geschwindigkeit (aus A bis F) zu, die der Bewegung in diesem Intervall entspricht!
Deine Antwort | |
\(\left[ {0;1,5} \right]\) | |
\(\left[ {1,5;3} \right]\) | |
\(\left[ {3;4} \right]\) | |
\(\left[ {4;6} \right]\) |
Aufgabe 1364
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vergleich dreier Geraden
In der untenstehenden Graphik sind drei Geraden g1, g2 und g3 dargestellt. Es gilt:
\(\eqalign{ & {g_1}:y = {k_1} \cdot x + {d_1} \cr & {g_2}:y = {k_2} \cdot x + {d_2} \cr & {g_3}:y = {k_3} \cdot x + {d_3} \cr} \)
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
- Aussage 1: \({k_1} < {k_2}\)
- Aussage 2: \({d_3} > {d_2}\)
- Aussage 3: \({k_2} > {k_3}\)
- Aussage 4: \({k_3} < {k_1}\)
- Aussage 5: \({d_1} < {d_3}\)
Aufgabe 1765
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zug
Ein Zug bewegt sich bis zum Zeitpunkt t = 0 mit konstanter Geschwindigkeit vorwärts. Ab dem Zeitpunkt t = 0 erhöht der Zug seine Geschwindigkeit. Die Funktion v ordnet dem Zeitpunkt t mit \(0 \leqslant t \leqslant 60\) die Geschwindigkeit \(v\left( t \right) = a \cdot t + b\) zu (t in s, v(t) in m/s, a, b ∈ ℝ).
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht.
Für den Parameter a gilt ___________1__________ und für den Parameter b gilt ________2___________ .
- Parameter a_1: \(a < 0\)
- Parameter a_2: \(a = 0\)
- Parameter a_3: \(a > 0\)
- Parameter b_1: \(b < 0\)
- Parameter b_2: \(b = 0\)
- Parameter b_3: \(b > 0\)
[0 / ½ / 1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1814
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verlauf des Graphen einer linearen Funktion
Gegeben ist eine lineare Funktion f mit \(f\left( x \right) = k \cdot x + d{\text{ mit }}k,d \in {\Bbb R}{\text{ und }}d \ne 0\). Die Ebene wird von den beiden Koordinatenachsen in vier Quadranten unterteilt (siehe nachstehende Skizze).
Für den Graphen von f gilt:
- Er verläuft nicht durch den 1. Quadranten.
- Er verläuft durch den 2., 3. und 4. Quadranten.
Dafür müssen bestimmte Bedingungen für k und d gelten.
Aufgabenstellung:
Kreuzen Sie die Aussage mit den entsprechenden Bedingungen an.
- Aussage 1: \(k < 0{\text{ und }}d < 0\)
- Aussage 2: \(k < 0{\text{ und }}d > 0\)
- Aussage 3: \(k > 0{\text{ und }}d < 0\)
- Aussage 4: \(k > 0{\text{ und }}d > 0\)
- Aussage 5: \(k = 0{\text{ und }}d < 0\)
- Aussage 6: \(k = 0{\text{ und }}d > 0\)
[0 / 1 Punkt]
Aufgabe 1885
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schnittpunkte einer Geraden mit der x-Achse
Jede Gleichung der Form \(y = k \cdot x + d{\text{ mit }}k,d \in {\Bbb R}\) beschreibt eine Gerade in der Ebene.
Aufgabenstellung - Bearbeitungszeit 05:40
Geben Sie diejenigen Bedingungen an, die die Parameter k und d einer solchen Geraden auf jeden Fall erfüllen müssen, damit diese keinen Schnittpunkt mit der x-Achse hat.
- Bedingung für k:
- Bedingung für d:
[0 / ½ / 1 P.]