AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 1.5
Aufgaben zum Inhaltsbereich FA 1.5: Eigenschaften von Funktionen erkennen, benennen, im Kontext deuten und zum Erstellen von Funktionsgraphen einsetzen können: Monotonie, Monotoniewechsel (lokale Extrema), Wendepunkte, Periodizität, Achsensymmetrie, asymptotisches Verhalten, Schnittpunkte mit den Achsen
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 1.5
Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften
FA 1.5: Eigenschaften von Funktionen erkennen, benennen, im Kontext deuten und zum Erstellen von Funktionsgraphen einsetzen können: Monotonie, Monotoniewechsel (lokale Extrema), Wendepunkte, Periodizität, Achsensymmetrie, asymptotisches Verhalten, Schnittpunkte mit den Achsen
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1413
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Den Graphen einer Polynomfunktion skizzieren
Eine Polynomfunktion f hat folgende Eigenschaften:
- Die Funktion ist für x ≤ 0 streng monoton steigend.
- Die Funktion ist im Intervall [0; 3] streng monoton fallend.
- Die Funktion ist für x ≥ 3 streng monoton steigend.
- Der Punkt P = (0|1) ist ein lokales Maximum (Hochpunkt).
- Die Stelle 3 ist eine Nullstelle.
Aufgabenstellung:
Erstellen Sie anhand der gegebenen Eigenschaften eine Skizze eines möglichen Funktionsgraphen von f im Intervall [–2; 4]!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1245
AHS - 1_245 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Argumente
Gegeben ist der Graph einer reellen Funktion f.
Aufgabenstellung:
Geben Sie alle Argumente \(x \in \left[ { - 3;9} \right]\) an,für die gilt: \({x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\)
Aufgabe 1048
AHS - 1_048 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionseigenschaften erkennen
Gegeben ist die Funktion f mit \(f\left( x \right) = {x^3} - 2x + 3\)
- Aussage 1: Die Funktion f ist an jeder Stelle monoton fallend.
- Aussage 2: Die Funktion f besitzt kein lokales Maximum.
- Aussage 3: Der Graph der Funktion f geht durch P = (0|3).
- Aussage 4: Eine Skizze des Graphen der Funktion f könnte wie folgt aussehen:
- Aussage 5: Eine Skizze des Graphen der Funktion f könnte wie folgt aussehen:
Aufgabenstellung:
Kreuzen Sie in nachstehender Tabelle die beiden für die Funktion f zutreffenden Aussagen an!
Aufgabe 1244
AHS - 1_244 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Achsenschnittpunkte eines Funktionsgraphen
Der Graph einer reellen Funktion f hat für x0 = 3 einen Punkt mit der x-Achse gemeinsam.
- Aussage 1: \(f\left( 0 \right) = 3\)
- Aussage 2: \(f\left( 3 \right) = 3\)
- Aussage 3: \(f\left( 3 \right) = 0\)
- Aussage 4: \(f\left( 3 \right) = {x_0}\)
- Aussage 5: \(f\left( 0 \right) = - 3\)
- Aussage 6: \(f\left( {{x_0}} \right) = 3\)
Aufgabenstellung
Kreuzen Sie diejenige Gleichung an, die diesen geometrischen Sachverhalt korrekt beschreibt!
Aufgabe 1247
AHS - 1_247 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Symmetrie
Gegeben ist eine Potenzfunktion der Form \(f\left( x \right) = a \cdot {x^z} + b\) mit \({\text{a}} \ne {\text{0}}{\text{, b}} \in \mathbb{R}{\text{, z}} \in \mathbb{Z}{\text{\ }}\left\{ 0 \right\}\)
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Falls z eine _____1_____ ist, ist der Graph von f immer symmetrisch _____2______ .
1 | |
gerade Zahl | A |
ungerade Zahl | B |
negative Zahl | C |
2 | |
zur x-Achse | I |
zur y-Achse | II |
zur 1. Mediane | III |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1012
AHS - 1_012 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynom 4. Grades
Die nachstehende Abbildung zeigt den Graphen einer Polynomfunktion f, die vom Grad 4 ist.
- Aussage 1: Die Funktion besitzt drei Wendepunkte.
- Aussage 2: Die Funktion ist symmetrisch bezüglich der y-Achse.
- Aussage 3: Die Funktion ist streng monoton steigend für x ∈ [0; 4].
- Aussage 4: Die Funktion besitzt einen Wendepunkt, der gleichzeitig auch Tiefpunkt ist.
- Aussage 5: Die Funktion hat drei Nullstellen.
Aufgabenstellung:
Kreuzen Sie die beiden für die Funktion f zutreffenden Aussagen an!
Aufgabe 1100
AHS - 1_100 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Monotonie einer linearen Funktion
Gegeben ist die Gerade mit der Gleichung \(y = - 2x + 4\). Auf dieser Geraden liegen die Punkte \(A = \left( {{x_A}\left| {{y_A}} \right.} \right)\) und \(B = \left( {{x_B}\left| {{y_B}} \right.} \right)\).
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Wenn \({x_A} < {x_B}\) ist, gilt _____1______, weil die Gerade _______2_______ ist.
1 | |
\({y_A} < {y_B}\) | A |
\({y_A} = {y_B}\) | B |
\({y_A} > {y_B}\) | C |
2 | |
monoton steigend | I |
monoton fallend | II |
konstant | III |
Aufgabe 1487
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionseigenschaften erkennen
Gegeben ist der Graph einer Polynomfunktion f dritten Grades.
- Aussage 1: Die Funktion f ist im Intervall (2; 3) monoton steigend.
- Aussage 2: Die Funktion f hat im Intervall (1; 2) eine lokale Maximumstelle.
- Aussage 3: Die Funktion f ändert im Intervall (–1; 1) das Krümmungsverhalten.
- Aussage 4: Der Funktionsgraph von f ist symmetrisch bezüglich der senkrechten Achse.
- Aussage 5: Die Funktion f ändert im Intervall (–3; 0) das Monotonieverhalten.
Aufgabenstellung:
Kreuzen Sie die für den dargestellten Funktionsgraphen von f zutreffende(n) Aussage(n) an!
Aufgabe 1315
AHS - 1_315 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion skizzieren
Eine Polynomfunktion vierten Grades soll die nachstehenden Eigenschaften erfüllen:
- Ihr Graph ist zur y-Achse symmetrisch.
- Im Intervall (–∞; –2) ist die Funktion streng monoton fallend.
- Ihre Wertemenge ist [–4; ∞).
- Die Stelle x = 2 ist eine lokale Extremstelle.
- An der Stelle x = 0 berührt der Graph die x-Achse.
Aufgabenstellung:
Skizzieren Sie den Graphen einer Polynomfunktion vierten Grades mit den oben angegebenen Eigenschaften im nachstehenden Koordinatensystem!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1740
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewinnfunktion
Die unten stehende Abbildung zeigt eine lineare Kostenfunktion \(K:x \to K\left( x \right)\) une eine lineare Erlösfunktion \(E:x \to E\left( x \right){\rm{ mit }}x \in \left[ {0;6} \right]\)
Für die Gewinnfunktion \(G:x \to G\left( x \right)\) gilt für alle \(x \in \left[ {0;6} \right]:\,\,\,\,\,G\left( x \right) = E\left( x \right) - K\left( x \right)\)
Aufgabenstellung
Zeichnen Sie in der nachstehenden Abbildung den Graphen von G ein. [0 / 1 Punkt]
Aufgabe 1246
AHS - 1_246 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionseigenschaften
Gegeben ist der Graph einer reellen Funktion f, der die x-Achse an den Stellen x1 = –2, x2 = 4 und x3 = 9 schneidet.
- Aussage 1: f ist im Intervall [–2; 4] monoton fallend.
- Aussage 2: \(f\left( { - 2} \right) = f\left( 9 \right)\)
- Aussage 3: \(f\left( { - 1} \right) > f\left( 1 \right)\)
- Aussage 4: Zu jedem x ∈ [–3; 9] gibt es genau ein f (x).
- Aussage 5: Zu jedem f (x) ∈ [–3; 0] gibt es genau ein x.
Aufgabenstellung
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1463
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Asymptotisches Verhalten
Gegeben sind fünf Funktionsgleichungen.
- Aussage 1: \({f_1}\left( x \right) = \dfrac{2}{x}\)
- Aussage 2: \({f_2}\left( x \right) = {2^x}\)
- Aussage 3: \({f_3}\left( x \right) = \dfrac{x}{2}\)
- Aussage 4: \({f_4}\left( x \right) = {\left( {\dfrac{1}{2}} \right)^x}\)
- Aussage 5: \({f_5}\left( x \right) = {x^{\dfrac{1}{2}}}\)
Aufgabenstellung
Welche dieser Funktionen besitzt/besitzen eine waagrechte Asymptote? Kreuzen Sie die zutreffende(n) Funktionsgleichung(en) an!