Sinusfunktion
Die Gegenkathete des Winkels, den ein beliebigen Punktes am Einheitskreis mit der x-Achse einschließt, heißt Sinus des Winkels.
Hier findest du folgende Inhalte
Formeln
Winkelbeziehungen im rechtwinkeligen Dreieck
Winkelfunktion ist ein Oberbegriff für Sinus, Kosinus, Tangens, Kotangens, Sekans und Kosekans. Das sind Seitenverhältnisse im rechtwinkeligen Dreieck. Das rechtwinkelige Dreieck ist ein Dreieck mit einem rechten Winkel. Dem rechten Winkel gegenüber liegt die längste Seite, die Hypotenuse. Die beiden an den rechten Winkel angrenzenden Seiten sind kürzer und heißen Katheten. Betrachtet man einen der beiden nicht rechten Winkel und nennt man ihn α so heißt jene Kathete die am Winkel α angrenzt die Ankathete und jene Kathete die dem Winkel α gegenüber liegt die Gegenkathete.
- Beachte: Die Bezeichnung Ankathete bzw. Gegenkathete hängt ausschließlich vom Winkel ab, auf den sich die Aussage bezieht. Ein und dieselbe kurze Seite vom Dreieck ist für den einen Winkel die Ankathete und für den anderen Winkel die Gegenkathete.
- Wichtig: Lerne daher bitte nie die Winkelfunktionen auf Basis der Bezeichnungen a,b oder c von den Dreieckseiten sondern immer mit den Bezeichnungen Ankathete, Gegenkathete und Hypotenuse!
Sinus
Der Sinus vom Winkel α entspricht dem Verhältnis von Gegenkathete zur Hypotenuse. D.h. kennt man die entsprechenden zwei Seiten vom rechtwinkeligen Dreieck, dann kann man den Sinus des Winkels α als deren Quotienten berechnen.
\(\sin \alpha = \dfrac{{{\text{Gegenkathete}}}}{{{\text{Hypotenuse}}}}\)
Kosinus
Der Kosinus vom Winkel α entspricht dem Verhältnis von Ankathete zur Hypotenuse. D.h. kennt man die entsprechenden zwei Seiten vom rechtwinkeligen Dreieck, dann kann man den Kosinus des Winkels α als deren Quotienten berechnen.
\(\cos \alpha = \dfrac{{{\text{Ankathete}}}}{{{\text{Hypotenuse}}}}\)
Tangens
Der Tangens vom Winkel α entspricht dem Verhältnis von Gegenkathete zur Ankathete. D.h. kennt man die entsprechenden zwei Seiten vom rechtwinkeligen Dreieck, dann kann man den Tangens des Winkels α als deren Quotienten berechnen.
\(\tan \alpha = \dfrac{{{\text{Gegenkathete}}}}{{{\text{Ankathete}}}} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\)
Kotangens
Der Kotangens vom Winkel α entspricht dem Verhältnis von Ankathete zur Gegenkathete. D.h. kennt man die entsprechenden zwei Seiten vom rechtwinkeligen Dreieck, dann kann man den Kotangens des Winkels α als deren Quotienten berechnen.
\(\cot \alpha = \dfrac{{{\text{Ankathete}}}}{{{\text{Gegenkathete}}}} = \dfrac{1}{{\tan \alpha }}\)
Sekans
Der Sekans ist im rechtwinkeligen Dreieck das Verhältnis von Hypotenuse zu Ankathete und somit der Kehrwert der Kosinusfunktion.
\(\eqalign{ & \sec \left( \alpha \right) = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Ankathete}}}} = \dfrac{1}{{\cos \left( \alpha \right)}} \cr & {\sec ^2}\left( \alpha \right) = 1 + {\tan ^2}\left( \alpha \right) \cr} \)
Kosekans
Der Kosekans ist im rechtwinkeligen Dreieck das Verhältnis von Hypotenuse zu Gegenkathete und somit der Kehrwert der Sinusfunktion.
\(\eqalign{ & \csc \left( \alpha \right) = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Gegenkathete}}}} = \dfrac{1}{{\sin \left( \alpha \right)}} \cr & {\csc ^2}\left( \alpha \right) = 1 + {\cot ^2}\left( \alpha \right) \cr} \)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Zusammenhang der Funktionswerte einer Winkelfunktion zu den anderen 5 Winkelfunktionen bei gleichem Winkel
Mit Hilfe dieser Beziehungen lässt sich eine Winkelfunktion in eine der fünf anderen Winkelfunktionen umrechnen
Sinus - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{ & \sin \left( x \right) = \cr & = \sqrt {1 - {{\cos }^2}\left( x \right)} = \dfrac{{\tan \left( x \right)}}{{\sqrt {1 - {{\tan }^2}\left( x \right)} }} = \dfrac{1}{{\sqrt {{{\cot }^2}\left( x \right) + 1} }} = \cr & = \dfrac{{\sqrt {{{\sec }^2}\left( x \right) - 1} }}{{\sec \left( x \right)}} = \dfrac{1}{{\csc \left( x \right)}} \cr}\)
Kosinus - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{ & \cos \left( x \right) = \cr & = \sqrt {1 - {{\sin }^2}\left( x \right)} = \dfrac{1}{{\sqrt {1 + {{\tan }^2}\left( x \right)} }} = \dfrac{{\cot \left( x \right)}}{{\sqrt {{{\cot }^2}\left( x \right) + 1} }} = \cr & = \dfrac{1}{{\sec \left( x \right)}} = \dfrac{{\sqrt {{{\csc }^2}\left( x \right) - 1} }}{{\csc \left( x \right)}} \cr}\)
Tangens - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{
& \tan \left( x \right) = \cr
& = \dfrac{{\sin \left( x \right)}}{{\sqrt {1 - {{\sin }^2}\left( x \right)} }} = \dfrac{{\sqrt {1 - {{\cos }^2}\left( x \right)} }}{{\cos \left( x \right)}} = \dfrac{1}{{\cot \left( x \right)}} = \cr
& = \sqrt {{{\sec }^2}\left( x \right) - 1} = \dfrac{1}{{\sqrt {{{\csc }^2}\left( {x - 1} \right)} }} \cr} \)
Kotangens - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{ & \cot \left( x \right) = \cr & = \dfrac{{\sqrt {1 - {{\sin }^2}\left( x \right)} }}{{\sin \left( x \right)}} = \dfrac{{\cos \left( x \right)}}{{\sqrt {1 - {{\cos }^2}\left( x \right)} }} = \dfrac{1}{{\tan \left( x \right)}} = \cr & = \dfrac{1}{{\sqrt {{{\sec }^2}\left( x \right) - 1} }} = \sqrt {{{\csc }^2}\left( x \right) - 1} \cr}\)
Sekans - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{
& \sec \left( x \right) = \cr
& = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( x \right)} }} = \dfrac{1}{{\cos \left( x \right)}} = \sqrt {1 + {{\tan }^2}\left( x \right)} = \cr
& = \dfrac{{\sqrt {{{\cot }^2}\left( x \right) + 1} }}{{\cot \left( x \right)}} = \dfrac{{\csc \left( x \right)}}{{\sqrt {{{\csc }^2}\left( x \right) - 1} }} \cr} \)
Kosekans - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{
& \csc \left( x \right) = \cr
& = \dfrac{1}{{\sin \left( x \right)}} = \dfrac{1}{{\sqrt {1 - {{\cos }^2}\left( x \right)} }} = \dfrac{{\sqrt {1 + {{\tan }^2}\left( x \right)} }}{{\tan \left( x \right)}} = \cr
& = \sqrt {{{\cot }^2}\left( x \right) + 1} = \dfrac{{\sec \left( x \right)}}{{\sqrt {{{\sec }^2}\left( x \right) - 1} }} \cr} \)
Reduktionsformeln für beliebige Winkel
Mit Hilfe der Reduktionsformeln kann die Berechnung jedes beliebigen Winkelfunktionswerts auf die Berechnung des Winkelfunktionswerts zwischen 0 ° und 90 ° zurückführen.
Reduktionsformeln für \( - \varphi ,\,\,\,\left( {\varphi \pm 90^\circ } \right),\,\,\,\left( {\varphi \pm 180^\circ } \right)\)
\(\eqalign{ & \sin \left( { - \varphi } \right) = - \sin \left( \varphi \right) \cr & sin\left( {\varphi \pm 90^\circ } \right) = \pm \cos \left( \varphi \right) \cr & \sin \left( {\varphi \pm 180^\circ } \right) = - \sin \left( \varphi \right) \cr & \cr & \cos \left( { - \varphi } \right) = \cos \left( \varphi \right) \cr & \cos \left( {\varphi \pm 90^\circ } \right) = \mp \sin \left( \varphi \right) \cr & \cos \left( {\varphi \pm 180} \right) = - \cos \left( \varphi \right) \cr & \cr & \tan \left( { - \varphi } \right) = - \tan \left( \varphi \right) \cr & \tan \left( {\varphi \pm 90^\circ } \right) = - \cot \left( \varphi \right) \cr & \tan \left( {\varphi \pm 180^\circ } \right) = \tan \left( \varphi \right) \cr & \cr & \cot \left( { - \varphi } \right) = - \cot \left( \varphi \right) \cr & \cot \left( {\varphi \pm 90^\circ } \right) = - \tan \left( \varphi \right) \cr & \cot \left( {\varphi \pm 180^\circ } \right) = \cot \left( \varphi \right) \cr} \)
Reduktionformeln für \(90^\circ \pm \varphi \)
\(\eqalign{ & \cos \left( {90\,^\circ - \varphi } \right) = - \cos \left( {90^\circ + \varphi } \right) = sin\left( \varphi \right) \cr & \sin \left( {90\,^\circ - \varphi } \right) = \sin \left( {90^\circ + \varphi } \right) = cos\left( \varphi \right) \cr & \cot \left( {90^\circ - \varphi } \right) = - \cot \left( {90^\circ + \varphi } \right) = \tan \left( \varphi \right) \cr & \tan \left( {90\,^\circ - \varphi } \right) = - \tan \left( {90^\circ + \varphi } \right) = \cot \left( \varphi \right) \cr} \)
Reduktionformeln für \(180° \pm \varphi \)
\(\eqalign{ & \sin \left( {180\,^\circ - \varphi } \right) = - \sin \left( {180\,^\circ + \varphi } \right) = \sin \left( \varphi \right) \cr & - \cos \left( {180\,^\circ - \varphi } \right) = - \cos \left( {180\,^\circ + \varphi } \right) = \cos \left( \varphi \right) \cr & - \tan \left( {180\,^\circ - \varphi } \right) = \tan \left( {180\,^\circ + \varphi } \right) = \tan \left( \varphi \right) \cr & - \cot \left( {180\,^\circ - \varphi } \right) = \cot \left( {180\,^\circ + \varphi } \right) = \cot \left( \varphi \right) \cr} \)
Reduktionformeln für \(270° \pm \varphi \)
\(\eqalign{ & - \cos \left( {270\,^\circ - \varphi } \right) = \cos \left( {270\,^\circ + \varphi } \right) = \sin \left( \varphi \right) \cr & - \sin \left( {270\,^\circ - \varphi } \right) = - \sin \left( {270\,^\circ + \varphi } \right) = \cos \left( \varphi \right) \cr & \cot \left( {270\,^\circ - \varphi } \right) = - \cot \left( {270\,^\circ + \varphi } \right) = \tan \left( \varphi \right) \cr & \tan \left( {270\,^\circ - \varphi } \right) = - \tan \left( {270\,^\circ + \varphi } \right) = \cot \left( \varphi \right) \cr} \)
Aufgaben
Aufgabe 1338
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Im untenstehenden Diagramm sind die Graphen zweier Funktionen f und g dargestellt.
Die Funktion f hat die Funktionsgleichung \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) mit den reellen Parametern a und b. Wenn diese Parameter in entsprechender Weise verändert werden, erhält man die Funktion g.
Aufgabenstellung:
Wie müssen die Parameter a und b verändert werden, um aus f die Funktion g zu erhalten? Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Um den Graphen von g zu erhalten, muss a ___1___ und b ___2___ .
1 | |
verdoppelt werden | A |
halbiert werden | B |
gleich bleiben | C |
2 | |
verdoppelt werden | I |
halbiert werden | II |
gleich bleiben | III |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 4128
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2018 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kugelstoßen - Aufgabe A_268
Teil b
Kugelstoßen ist eine Disziplin bei den Olympischen Sommerspielen. Eine Metallkugel muss so weit wie möglich aus einem Kreis in einen vorgegebenen Aufschlagbereich gestoßen werden. Der Aufschlagbereich ist in der nachstehenden Abbildung in der Ansicht von oben dargestellt (alle Angaben in Metern).
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den in der obigen Abbildung markierten Winkel α.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Markieren Sie in der obigen Abbildung diejenige Strecke, deren Länge durch den folgenden Ausdruck berechnet werden kann:
\(\dfrac{6}{{\tan \left( {\dfrac{\alpha }{2}} \right)}}\)
[1 Punkt]
Aufgabe 1086
AHS - 1_086 & Lehrstoff: FA 6.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Trigonometrische Funktionen skalieren
Gegeben ist der Graph der Funktion \(f\left( x \right) = \sin \left( {x + \dfrac{\pi }{2}} \right)\)
Aufgabenstellung:
Ergänzen Sie in der obenstehenden Zeichnung die Skalierung in den vorgegebenen fünf Kästchen!
Aufgabe 1066
AHS - 1_066 & Lehrstoff: FA 6.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wirkung der Parameter einer Sinusfunktion
Gegeben ist eine Sinusfunktion der Art \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\). Dabei beeinflussen die Parameter a und b das Aussehen des Graphen von f im Vergleich zum Graphen von \(g\left( x \right) = \sin \left( x \right)\)
A | Dehnung des Graphen der Funktion entlang der x-Achse auf das Doppelte |
B | Phasenverschiebung um 2 |
C | Doppelte Frequenz |
D | Streckung entlang der y-Achse auf das Doppelte |
E | Halbe Amplitude |
F | Verschiebung entlang der y-Achse um –2 |
Aufgabenstellung:
Ordnen Sie den Parameterwerten die entsprechenden Auswirkungen (aus A bis F) auf das Aussehen von f im Vergleich zu g zu!
Deine Antwort | |
\(a = 2\) | |
\(a = \dfrac{1}{2}\) | |
\(b = 2\) | |
\(b = \dfrac{1}{2}\) |
Aufgabe 1076
AHS - 1_076 & Lehrstoff: AG 4.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinus im Einheitskreis
Aufgabenstellung:
Zeichnen Sie im Einheitskreis alle Winkel aus [0°; 360°] ein, für die sin α = –0,7 gilt! Achten Sie auf die Kennzeichnung der Winkel durch Winkelbögen.
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1221
AHS - 1_221 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenradius
Die Sonne erscheint von der Erde aus unter einem Sehwinkel von α ≈ 0,52°. Die Entfernung der Erde vom Mittelpunkt der Sonne beträgt ca. \(150 \cdot {10^6}{\rm{ km}}\).
Aufgabenstellung - Bearbeitungszeit 05:40
Geben Sie eine Formel zur Berechnung des Sonnenradius an und berechnen Sie den Radius!
Aufgabe 1739
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Räumliches Sehen
Betrachtet man einen Gegenstand, so schließen die Blickrichtungen der beiden Augen einen Winkel ε ein. In der nachstehend dargestellten Situation hat der Gegenstand G zu den beiden Augen A1 und A2 den gleichen Abstand g. Der Augenabstand wird mit d bezeichnet.
Aufgabenstellung
Geben Sie den Abstand g in Abhängigkeit vom Augenabstand d und vom Winkel ε an. [0 / 1 Punkt]
g =
Aufgabe 1344
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Definition der Winkelfunktionen
Die nachstehende Abbildung zeigt ein rechtwinkeliges Dreieck PQR.
- Aussage 1: \(\sin \alpha = \dfrac{p}{r}\)
- Aussage 2: \(\sin \alpha = \dfrac{q}{r}\)
- Aussage 3: \(\tan \beta = \dfrac{p}{q}\)
- Aussage 4: \(\tan \alpha = \dfrac{r}{p}\)
- Aussage 5: \(\cos \beta = \dfrac{p}{r}\)
Aufgabenstellung:
Kreuzen Sie jene beiden Gleichungen an, die für das dargestellte Dreieck gelten!
Aufgabe 1594
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 5. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gefälle einer Regenrinne
Eine Regenrinne hat eine bestimmte Länge l (in Metern). Damit das Wasser gut abrinnt, muss die Regenrinne unter einem Winkel von mindestens α zur Horizontalen geneigt sein. Dadurch ergibt sich ein Höhenunterschied von mindestens h Metern zwischen den beiden Endpunkten der Regenrinne.
Aufgabenstellung:
Geben Sie eine Formel zur Berechnung von h in Abhängigkeit von l und α an!
h=
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1160
AHS - 1_160 & Lehrstoff: AG 4.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Einheitskreis
Der Punkt \(P = \left( { - \dfrac{4}{5}\left| {\dfrac{3}{5}} \right.} \right)\)liegt auf dem Einheitskreis.
Aufgabenstellung
Bestimmen Sie für den in der Abbildung markierten Winkel α den Wert von sin(α )!
Aufgabe 1219
AHS - 1_219 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Dennis Tito
Dennis Tito, der 2001 als erster Weltraumtourist unterwegs war, sah die Erdoberfläche unter einem Sehwinkel von 142°.
Aufgabenstellung:
Berechnen Sie, wie hoch (h) über der Erdoberfläche sich Dennis Tito befand, wenn vereinfacht die Erde als Kugel mit einem Radius r = 6 370 km angenommen wird! Geben Sie das Ergebnis auf ganze Kilometer gerundet an!
Aufgabe 1222
AHS - 1_222 & Lehrstoff: AG 4.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktionen im Einheitskreis
In der nachstehenden Abbildung ist ein Winkelfunktionswert eines Winkels β am Einheitskreis farbig dargestellt.
Aufgabenstellung:
Geben Sie an, um welche Winkelfunktion es sich dabei handelt, und zeichnen Sie alle Winkel im Einheitskreis ein, die diesen Winkelfunktionswert besitzen! Kennzeichnen Sie diese durch Winkelbögen!