AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 5.1
Aufgaben zum Inhaltsbereich FA 5.1: Verbal, tabellarisch, grafisch oder durch eine Gleichung (Formel) gegebene exponentielle Zusammenhänge als Exponentialfunktion erkennen bzw. betrachten können; zwischen diesenDarstellungsformen wechseln können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 5.1
Exponentialfunktion
\(\eqalign{ & f\left( x \right) = a \cdot {b^x} \cr & f\left( x \right) = a \cdot {e^{\lambda \cdot x}} \cr & {\text{mit: a}}{\text{,b}} \in {{\Bbb R}^ + },\,\,\lambda \in {\Bbb R} \cr}\)
FA 5.1: Verbal, tabellarisch, grafisch oder durch eine Gleichung (Formel) gegebene exponentielle Zusammenhänge als Exponentialfunktion erkennen bzw. betrachten können; zwischen diesen Darstellungsformen wechseln können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1435
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentialfunktion
Gegeben ist der Graph einer Exponentialfunktion f mit \(f\left( x \right) = a \cdot {b^x}\) mit \(a,\,\,b \in {R^ + }\) durch die Punkte \(P = \left( {0\left| {25} \right.} \right)\)und \(Q = \left( {1\left| {20} \right.} \right)\)
Aufgabenstellung:
Geben Sie eine Funktionsgleichung der dargestellten Exponentialfunktion f an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1273
AHS - 1_273 & Lehrstoff: FA 5.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Radioaktives Element
Ein radioaktives Element X zerfällt mit einer Halbwertszeit von 8 Tagen. Zum Zeitpunkt t = 0 sind 40 g des radioaktiven Elements vorhanden. Die Funktion m beschreibt die zum Zeitpunkt t noch vorhandene Menge von X.
Aufgabenstellung:
Zeichnen Sie im gegebenen Koordinatensystem den Graphen von m!
Aufgabe 1599
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Änderungsprozess
Durch die Gleichung \(N\left( t \right) = 1,2 \cdot {0,98^t}\) wird ein Änderungsprozess einer Größe N in Abhängigkeit von der Zeit t beschrieben.
- Aussage 1: Von einer radioaktiven Substanz zerfallen pro Zeiteinheit 0,02 % der am jeweiligen Tag vorhandenen Menge.
- Aussage 2: In ein Speicherbecken fliesen pro Zeiteinheit 0,02 m3 Wasser zu.
- Aussage 3: Vom Wirkstoff eines Medikaments werden pro Zeiteinheit 1,2 mg abgebaut.
- Aussage 4: Die Einwohnerzahl eines Landes nimmt pro Zeiteinheit um 1,2 % zu.
- Aussage 5: Der Wert einer Immobilie steigt pro Zeiteinheit um 2 %.
- Aussage 6: Pro Zeiteinheit nimmt die Temperatur eines Körpers um 2 % ab.
Aufgabenstellung:
Welcher der angeführten Änderungsprozesse kann durch die angegebene Gleichung beschrieben werden? Kreuzen Sie den zutreffenden Änderungsprozess an!
Aufgabe 1272
AHS - 1_272 & Lehrstoff: FA 5.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentieller Zusammenhang
Die Funktion f beschreibt eine exponentielle Änderung und ist durch zwei Wertepaare angegeben.
t | 2 | 4 |
f(t) | 400 | 100 |
Aufgabenstellung:
Bestimmen Sie eine Funktionsgleichung von f !
Aufgabe 1483
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ausbreitung eines Ölteppichs
Der Flächeninhalt eines Ölteppichs beträgt momentan 1,5 km2 und wächst täglich um 5 %.
Aufgabenstellung:
Geben Sie an, nach wie vielen Tagen d der Ölteppich erstmals größer als 2 km2 ist!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1575
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Exponentialfunktion
Von einer Exponentialfunktion f sind die folgenden Funktionswerte bekannt
\(\eqalign{ & f\left( 0 \right) = 12 \cr & f\left( 4 \right) = 192 \cr} \)
Aufgabenstellung:
Geben Sie eine Funktionsgleichung der Exponentialfunktion f an!
f(x)=
Aufgabe 1672
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Dicke einer Bleiplatte
In der Medizintechnik werden Röntgenstrahlen eingesetzt. Durch den Einbau von Bleiplatten in Schutzwanden sollen Personen vor diesen Strahlen geschützt werden. Man geht davon aus, dass pro 1 mm Dicke der Bleiplatte die Strahlungsintensität um 5 % abnimmt.
Aufgabenstellung:
Berechnen Sie die notwendige Dicke x (in mm) einer Bleiplatte, wenn die Strahlungsintensität auf 10 % der ursprünglichen Strahlungsintensität, mit der die Strahlen auf die Bleiplatte auftreffen, gesenkt werden soll!
Aufgabe 1841
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsterm
Von einer reellen Funktion \(f:{\Bbb R} \to {{\Bbb R}^ + }\) ist folgendes bekannt:
- \(f\left( 1 \right) = 3\)
- für alle reellen Zahlen x gilt: f(x + 1) ist um 50 % größer als f(x).
Aufgabenstellung:
Geben Sie einen Funktionsterm einer solchen Funktion f an.
f (x) =
[0 / 1 P.]
Aufgabe 11230
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2022 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grippeerkrankungen
Am Abend des 10. Februar 2019 waren in einem bestimmten Land 2 000 Personen an Grippe erkrankt, am Abend des 21. Februar 2019 waren es 4 000 Personen. Modellhaft wird angenommen,
dass in diesem Land im Februar 2019 die Anzahl der an Grippe erkrankten Personen von Tag zu Tag um den gleichen Prozentsatz gestiegen ist.
Aufgabenstellung - Bearbeitungszeit 05:40
Berechnen Sie diesen Prozentsatz.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 11254
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Jänner 2023 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baumhöhe
Die Höhe eines bestimmten Baumes kann in den ersten 15 Jahren nach dem Einpflanzen durch eine Exponentialfunktion modelliert werden. Dieser Baum hat 10 Jahre nach dem Einpflanzen eine Höhe von 2,2 m und 15 Jahre nach dem Einpflanzen eine Höhe von 2,7 m.
Aufgabenstellung - Bearbeitungszeit 05:40
Berechnen Sie die Höhe dieses Baumes zum Zeitpunkt des Einpflanzens.
[0 / 1 P.]