AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 2.4
Aufgaben zum Inhaltsbereich FA 2.4: Charakteristische Eigenschaften kennen und im Kontext deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 2.4
Lineare Funktion
\(f\left( x \right) = k \cdot x + d\)
FA 2.4: Charakteristische Eigenschaften kennen und im Kontext deuten können:
\(\eqalign{ & f\left( {x + 1} \right) = f\left( x \right) + k \cr & \dfrac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} = k = f'\left( x \right) \cr}\)
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1131
AHS - 1_131 & Lehrstoff: FA 2.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften linearer Funktionen
Gegeben ist eine lineare Funktion f mit der Gleichung \(f\left( x \right) = 4x - 2\)
Aufgabenstellung
Wählen Sie zwei Argumente x1 und x2 mit x2 = x1 + 1 und zeigen Sie, dass die Differenz f(x2) – f(x1) gleich dem Wert der Steigung k der gegebenen linearen Funktion f ist!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1063
AHS - 1_063 & Lehrstoff: FA 2.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Temperaturskala
Temperaturen werden bei uns in °C (Celsius) gemessen; in einigen anderen Ländern ist die Messung in °F (Fahrenheit) üblich. Die Gerade f stellt den Zusammenhang zwischen °C und °F dar.
- Aussage 1: 160 °C entsprechen doppelt so vielen °F.
- Aussage 2: 140 °F entsprechen 160 °C.
- Aussage 3: Eine Zunahme um 1 °C bedeutet eine Zunahme um 1,8 °F.
- Aussage 4: Eine Abnahme um 1 °F bedeutet eine Abnahme um 18 °C.
- Aussage 5: Der Anstieg der Geraden ist \(k = \dfrac{{{x_2} - {x_1}}}{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}} = \dfrac{{100}}{{180}}\)
Aufgabenstellung:
Welche der obenstehenden Aussagen können Sie der Abbildung entnehmen? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1260
AHS - 1_260 & Lehrstoff: FA 2.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Charakteristische Eigenschaft
Aufgabenstellung
Geben Sie den Term einer Funktion f an, welche die Eigenschaft \(f\left( {x + 1} \right) = f\left( x \right) + 5\) erfüllt!
Aufgabe 1018
AHS - 1_018 & Lehrstoff: FA 2.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Charakteristische Eigenschaften einer linearen Funktion
Gegeben ist eine reelle Funktion f mit \(f\left( x \right) = 3x + 2\)
- Aussage 1: \(f\left( {x + 1} \right) = f\left( x \right) + 3\)
- Aussage 2: \(f\left( {x + 1} \right) = f\left( x \right) + 2\)
- Aussage 3: \(f\left( {x + 1} \right) = 3 \cdot f\left( x \right)\)
- Aussage 4: \(f\left( {x + 1} \right) = 2 \cdot f\left( x \right)\)
- Aussage 5: \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = 3 \cdot \left( {{x_2} - {x_1}} \right){\text{ wobei }}{x_1},\,\,\,{x_2} \in \mathbb{R}{\text{ und }}{x_1} \ne {x_2}\)
Aufgabenstellung:
Kreuzen Sie die beiden Eigenschaften an, die auf die Funktion f zutreffen!
Aufgabe 1363
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften einer linearen Funktion
Eine Funktion f wird durch die Funktionsgleichung
\(f\left( x \right) = k \cdot x + d{\text{ mit }}k,d \in {\Bbb R}{\text{ und }}k \ne 0\) beschrieben.
Aufgabenstellung:
Kreuzen Sie die für f zutreffende(n) Aussage(n) an!
- Aussage 1: f kann lokale Extremstellen besitzen.
- Aussage 2: \(f\left( {x + 1} \right) = f\left( x \right) + k\)
- Aussage 3: f besitzt immer genau eine Nullstelle.
- Aussage 4: \(\dfrac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} = k{\text{ mit }}{x_1} \ne {x_2}\)
- Aussage 5: Die Krümmung des Graphen der Funktion f ist null.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1670
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Deutung einer Gleichung
Ein mit Helium gefüllter Ballon steigt lotrecht auf. Die jeweilige Höhe des Ballons über einer ebenen Fläche kann durch eine lineare Funktion h in Abhängigkeit von der Zeit t modelliert werden. Die Höhe h(t) wird in Metern, die Zeit t in Sekunden gemessen.
Aufgabenstellung:
Deuten Sie die Gleichung \(h\left( {t + 1} \right) - h\left( t \right) = 2\)
Aufgabe 1766
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Funktion
Gegeben ist eine lineare Funktion
\(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = k \cdot x + d{\text{ mit }}k,d \in {\Bbb R}{\text{ und }}k \ne 0\)
Es gilt \(\dfrac{{f\left( 5 \right) - f\left( a \right)}}{2} = k\) für ein \(a \in {\Bbb R}\)
Aufgabenstellung:
Geben Sie a an.
Aufgabe 11186
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 3. Mai 2022 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Funktion
Gegeben ist die lineare Funktion
\(f:\mathbb{R} \to \mathbb{R}{\text{ mit }}f\left( x \right) = k \cdot x + d{\text{ und }}k,d \in \mathbb{R}\)
Für alle x ∈ ℝ gilt: ____1_____ =____ 2______ .
- Satzteil 1.1: f(x + 1)
- Satzteil 1.2: f(x + 2)
- Satzteil 1.3: f(x + 1) + f(x + 1)
- Satzteil 2.1: f(x) + 2 ∙ k
- Satzteil 2.2: f(x) + d
- Satzteil 2.3: 2 ∙ f(x) + 2
Aufgabenstellung - Bearbeitungszeit 05:40
Ergänzen Sie die Textlücken im obenstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass auf jeden Fall eine richtige Aussage entsteht.
[0 / 1 P.]