Tangensfunktion
Der Tangens vom Winkel α entspricht dem Verhältnis von Gegenkathete zur Ankathete
Hier findest du folgende Inhalte
Formeln
Winkelbeziehungen im rechtwinkeligen Dreieck
Winkelfunktion ist ein Oberbegriff für Sinus, Kosinus, Tangens, Kotangens, Sekans und Kosekans. Das sind Seitenverhältnisse im rechtwinkeligen Dreieck. Das rechtwinkelige Dreieck ist ein Dreieck mit einem rechten Winkel. Dem rechten Winkel gegenüber liegt die längste Seite, die Hypotenuse. Die beiden an den rechten Winkel angrenzenden Seiten sind kürzer und heißen Katheten. Betrachtet man einen der beiden nicht rechten Winkel und nennt man ihn α so heißt jene Kathete die am Winkel α angrenzt die Ankathete und jene Kathete die dem Winkel α gegenüber liegt die Gegenkathete.
- Beachte: Die Bezeichnung Ankathete bzw. Gegenkathete hängt ausschließlich vom Winkel ab, auf den sich die Aussage bezieht. Ein und dieselbe kurze Seite vom Dreieck ist für den einen Winkel die Ankathete und für den anderen Winkel die Gegenkathete.
- Wichtig: Lerne daher bitte nie die Winkelfunktionen auf Basis der Bezeichnungen a,b oder c von den Dreieckseiten sondern immer mit den Bezeichnungen Ankathete, Gegenkathete und Hypotenuse!
Sinus
Der Sinus vom Winkel α entspricht dem Verhältnis von Gegenkathete zur Hypotenuse. D.h. kennt man die entsprechenden zwei Seiten vom rechtwinkeligen Dreieck, dann kann man den Sinus des Winkels α als deren Quotienten berechnen.
\(\sin \alpha = \dfrac{{{\text{Gegenkathete}}}}{{{\text{Hypotenuse}}}}\)
Kosinus
Der Kosinus vom Winkel α entspricht dem Verhältnis von Ankathete zur Hypotenuse. D.h. kennt man die entsprechenden zwei Seiten vom rechtwinkeligen Dreieck, dann kann man den Kosinus des Winkels α als deren Quotienten berechnen.
\(\cos \alpha = \dfrac{{{\text{Ankathete}}}}{{{\text{Hypotenuse}}}}\)
Tangens
Der Tangens vom Winkel α entspricht dem Verhältnis von Gegenkathete zur Ankathete. D.h. kennt man die entsprechenden zwei Seiten vom rechtwinkeligen Dreieck, dann kann man den Tangens des Winkels α als deren Quotienten berechnen.
\(\tan \alpha = \dfrac{{{\text{Gegenkathete}}}}{{{\text{Ankathete}}}} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\)
Kotangens
Der Kotangens vom Winkel α entspricht dem Verhältnis von Ankathete zur Gegenkathete. D.h. kennt man die entsprechenden zwei Seiten vom rechtwinkeligen Dreieck, dann kann man den Kotangens des Winkels α als deren Quotienten berechnen.
\(\cot \alpha = \dfrac{{{\text{Ankathete}}}}{{{\text{Gegenkathete}}}} = \dfrac{1}{{\tan \alpha }}\)
Sekans
Der Sekans ist im rechtwinkeligen Dreieck das Verhältnis von Hypotenuse zu Ankathete und somit der Kehrwert der Kosinusfunktion.
\(\eqalign{ & \sec \left( \alpha \right) = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Ankathete}}}} = \dfrac{1}{{\cos \left( \alpha \right)}} \cr & {\sec ^2}\left( \alpha \right) = 1 + {\tan ^2}\left( \alpha \right) \cr} \)
Kosekans
Der Kosekans ist im rechtwinkeligen Dreieck das Verhältnis von Hypotenuse zu Gegenkathete und somit der Kehrwert der Sinusfunktion.
\(\eqalign{ & \csc \left( \alpha \right) = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Gegenkathete}}}} = \dfrac{1}{{\sin \left( \alpha \right)}} \cr & {\csc ^2}\left( \alpha \right) = 1 + {\cot ^2}\left( \alpha \right) \cr} \)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Zusammenhang der Funktionswerte einer Winkelfunktion zu den anderen 5 Winkelfunktionen bei gleichem Winkel
Mit Hilfe dieser Beziehungen lässt sich eine Winkelfunktion in eine der fünf anderen Winkelfunktionen umrechnen
Sinus - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{ & \sin \left( x \right) = \cr & = \sqrt {1 - {{\cos }^2}\left( x \right)} = \dfrac{{\tan \left( x \right)}}{{\sqrt {1 - {{\tan }^2}\left( x \right)} }} = \dfrac{1}{{\sqrt {{{\cot }^2}\left( x \right) + 1} }} = \cr & = \dfrac{{\sqrt {{{\sec }^2}\left( x \right) - 1} }}{{\sec \left( x \right)}} = \dfrac{1}{{\csc \left( x \right)}} \cr}\)
Kosinus - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{ & \cos \left( x \right) = \cr & = \sqrt {1 - {{\sin }^2}\left( x \right)} = \dfrac{1}{{\sqrt {1 + {{\tan }^2}\left( x \right)} }} = \dfrac{{\cot \left( x \right)}}{{\sqrt {{{\cot }^2}\left( x \right) + 1} }} = \cr & = \dfrac{1}{{\sec \left( x \right)}} = \dfrac{{\sqrt {{{\csc }^2}\left( x \right) - 1} }}{{\csc \left( x \right)}} \cr}\)
Tangens - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{
& \tan \left( x \right) = \cr
& = \dfrac{{\sin \left( x \right)}}{{\sqrt {1 - {{\sin }^2}\left( x \right)} }} = \dfrac{{\sqrt {1 - {{\cos }^2}\left( x \right)} }}{{\cos \left( x \right)}} = \dfrac{1}{{\cot \left( x \right)}} = \cr
& = \sqrt {{{\sec }^2}\left( x \right) - 1} = \dfrac{1}{{\sqrt {{{\csc }^2}\left( {x - 1} \right)} }} \cr} \)
Kotangens - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{ & \cot \left( x \right) = \cr & = \dfrac{{\sqrt {1 - {{\sin }^2}\left( x \right)} }}{{\sin \left( x \right)}} = \dfrac{{\cos \left( x \right)}}{{\sqrt {1 - {{\cos }^2}\left( x \right)} }} = \dfrac{1}{{\tan \left( x \right)}} = \cr & = \dfrac{1}{{\sqrt {{{\sec }^2}\left( x \right) - 1} }} = \sqrt {{{\csc }^2}\left( x \right) - 1} \cr}\)
Sekans - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{
& \sec \left( x \right) = \cr
& = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\left( x \right)} }} = \dfrac{1}{{\cos \left( x \right)}} = \sqrt {1 + {{\tan }^2}\left( x \right)} = \cr
& = \dfrac{{\sqrt {{{\cot }^2}\left( x \right) + 1} }}{{\cot \left( x \right)}} = \dfrac{{\csc \left( x \right)}}{{\sqrt {{{\csc }^2}\left( x \right) - 1} }} \cr} \)
Kosekans - Beziehungen zu den anderen 5 Winkelfunktionen
\(\eqalign{
& \csc \left( x \right) = \cr
& = \dfrac{1}{{\sin \left( x \right)}} = \dfrac{1}{{\sqrt {1 - {{\cos }^2}\left( x \right)} }} = \dfrac{{\sqrt {1 + {{\tan }^2}\left( x \right)} }}{{\tan \left( x \right)}} = \cr
& = \sqrt {{{\cot }^2}\left( x \right) + 1} = \dfrac{{\sec \left( x \right)}}{{\sqrt {{{\sec }^2}\left( x \right) - 1} }} \cr} \)
Reduktionsformeln für beliebige Winkel
Mit Hilfe der Reduktionsformeln kann die Berechnung jedes beliebigen Winkelfunktionswerts auf die Berechnung des Winkelfunktionswerts zwischen 0 ° und 90 ° zurückführen.
Reduktionsformeln für \( - \varphi ,\,\,\,\left( {\varphi \pm 90^\circ } \right),\,\,\,\left( {\varphi \pm 180^\circ } \right)\)
\(\eqalign{ & \sin \left( { - \varphi } \right) = - \sin \left( \varphi \right) \cr & sin\left( {\varphi \pm 90^\circ } \right) = \pm \cos \left( \varphi \right) \cr & \sin \left( {\varphi \pm 180^\circ } \right) = - \sin \left( \varphi \right) \cr & \cr & \cos \left( { - \varphi } \right) = \cos \left( \varphi \right) \cr & \cos \left( {\varphi \pm 90^\circ } \right) = \mp \sin \left( \varphi \right) \cr & \cos \left( {\varphi \pm 180} \right) = - \cos \left( \varphi \right) \cr & \cr & \tan \left( { - \varphi } \right) = - \tan \left( \varphi \right) \cr & \tan \left( {\varphi \pm 90^\circ } \right) = - \cot \left( \varphi \right) \cr & \tan \left( {\varphi \pm 180^\circ } \right) = \tan \left( \varphi \right) \cr & \cr & \cot \left( { - \varphi } \right) = - \cot \left( \varphi \right) \cr & \cot \left( {\varphi \pm 90^\circ } \right) = - \tan \left( \varphi \right) \cr & \cot \left( {\varphi \pm 180^\circ } \right) = \cot \left( \varphi \right) \cr} \)
Reduktionformeln für \(90^\circ \pm \varphi \)
\(\eqalign{ & \cos \left( {90\,^\circ - \varphi } \right) = - \cos \left( {90^\circ + \varphi } \right) = sin\left( \varphi \right) \cr & \sin \left( {90\,^\circ - \varphi } \right) = \sin \left( {90^\circ + \varphi } \right) = cos\left( \varphi \right) \cr & \cot \left( {90^\circ - \varphi } \right) = - \cot \left( {90^\circ + \varphi } \right) = \tan \left( \varphi \right) \cr & \tan \left( {90\,^\circ - \varphi } \right) = - \tan \left( {90^\circ + \varphi } \right) = \cot \left( \varphi \right) \cr} \)
Reduktionformeln für \(180° \pm \varphi \)
\(\eqalign{ & \sin \left( {180\,^\circ - \varphi } \right) = - \sin \left( {180\,^\circ + \varphi } \right) = \sin \left( \varphi \right) \cr & - \cos \left( {180\,^\circ - \varphi } \right) = - \cos \left( {180\,^\circ + \varphi } \right) = \cos \left( \varphi \right) \cr & - \tan \left( {180\,^\circ - \varphi } \right) = \tan \left( {180\,^\circ + \varphi } \right) = \tan \left( \varphi \right) \cr & - \cot \left( {180\,^\circ - \varphi } \right) = \cot \left( {180\,^\circ + \varphi } \right) = \cot \left( \varphi \right) \cr} \)
Reduktionformeln für \(270° \pm \varphi \)
\(\eqalign{ & - \cos \left( {270\,^\circ - \varphi } \right) = \cos \left( {270\,^\circ + \varphi } \right) = \sin \left( \varphi \right) \cr & - \sin \left( {270\,^\circ - \varphi } \right) = - \sin \left( {270\,^\circ + \varphi } \right) = \cos \left( \varphi \right) \cr & \cot \left( {270\,^\circ - \varphi } \right) = - \cot \left( {270\,^\circ + \varphi } \right) = \tan \left( \varphi \right) \cr & \tan \left( {270\,^\circ - \varphi } \right) = - \tan \left( {270\,^\circ + \varphi } \right) = \cot \left( \varphi \right) \cr} \)
Aufgaben
Aufgabe 4026
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil b
Ein Strahlengang durch ein Glasprisma einer Filmkamera kann folgendermaßen dargestellt werden:
Hinweis: Die Skizze ist nicht maßstabsgetreu!
\(\eqalign{ & a = 0,50{\text{ cm}} \cr & x = 0,55{\text{ cm}} \cr & \beta = 40^\circ \cr & \gamma = 68^\circ \cr} \)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge z des Strahlengangs.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge y des Strahlengangs.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge x + y + z des Strahlengangs
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4128
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2018 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kugelstoßen - Aufgabe A_268
Teil b
Kugelstoßen ist eine Disziplin bei den Olympischen Sommerspielen. Eine Metallkugel muss so weit wie möglich aus einem Kreis in einen vorgegebenen Aufschlagbereich gestoßen werden. Der Aufschlagbereich ist in der nachstehenden Abbildung in der Ansicht von oben dargestellt (alle Angaben in Metern).
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den in der obigen Abbildung markierten Winkel α.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Markieren Sie in der obigen Abbildung diejenige Strecke, deren Länge durch den folgenden Ausdruck berechnet werden kann:
\(\dfrac{6}{{\tan \left( {\dfrac{\alpha }{2}} \right)}}\)
[1 Punkt]
Aufgabe 4208
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eiffelturm - Aufgabe A_287
Teil c
Von Punkt P aus sieht man den höchsten Punkt des H Meter hohen Eiffelturms unter dem Höhenwinkel α und die h Meter hohe Spitze unter dem Sehwinkel β (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht. [Lückentext]
[1 Punkt]
Die Höhe _____1_____ ist durch den Ausdruck _____2____ gegeben
1. Lücke:
- Aussage A: H
- Aussage B: h
- Aussage C: H-h
2. Lücke:
- Aussage I: \(d \cdot \tan \left( {\alpha + \beta } \right)\)
- Aussage II: \(d \cdot \tan \left( {\alpha - \beta } \right)\)
- Aussage III: \(d \cdot \tan \left( \beta \right)\)
Aufgabe 1092
AHS - 1_092 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktion
Gegeben ist ein rechtwinkeliges Dreieck:
Aufgabenstellung:
Geben Sie tan ψ in Abhängigkeit von den Seitenlängen u, v und w an!
Aufgabe 1416
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sehwinkel
Der Sehwinkel ist derjenige Winkel, unter dem ein Objekt von einem Beobachter wahrgenommen wird. Die nachstehende Abbildung verdeutlicht den Zusammenhang zwischen dem Sehwinkel α, der Entfernung r und der realen („wahren“) Ausdehnung g eines Objekts in zwei Dimensionen.
Quelle: http://upload.wikimedia.org/wikipedia/commons/d/d3/ScheinbareGroesse.png [22.01.2015] (adaptiert)
Aufgabenstellung:
Geben Sie eine Formel an, mit der die reale Ausdehnung g dieses Objekts mithilfe von \(\alpha\) und r berechnet werden kann!
g =
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1440
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonnenhöhe
Unter der Sonnenhöhe φ versteht man denjenigen spitzen Winkel, den die einfallenden Sonnenstrahlen mit einer horizontalen Ebene einschließen. Die Schattenlänge s eines Gebäudes der Höhe h hangt von der Sonnenhöhe φ ab (s, h in Metern).
Aufgabenstellung:
Geben Sie eine Formel an, mit der die Schattenlange s eines Gebäudes der Hohe h mithilfe der Sonnenhöhe φ berechnet werden kann!
Aufgabe 1220
AHS - 1_220 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Raumdiagonale beim Würfel
Gegeben ist ein Würfel mit der Seitenlänge a
Aufgabenstellung:
Berechnen Sie die Größe des Winkels φ zwischen einer Raumdiagonalen und einer Seitenflächendiagonalen eines Würfels!
Aufgabe 1344
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Definition der Winkelfunktionen
Die nachstehende Abbildung zeigt ein rechtwinkeliges Dreieck PQR.
- Aussage 1: \(\sin \alpha = \dfrac{p}{r}\)
- Aussage 2: \(\sin \alpha = \dfrac{q}{r}\)
- Aussage 3: \(\tan \beta = \dfrac{p}{q}\)
- Aussage 4: \(\tan \alpha = \dfrac{r}{p}\)
- Aussage 5: \(\cos \beta = \dfrac{p}{r}\)
Aufgabenstellung:
Kreuzen Sie jene beiden Gleichungen an, die für das dargestellte Dreieck gelten!
Aufgabe 1134
AHS - 1_134 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechtwinkeliges Dreieck
Von einem rechtwinkeligen Dreieck ABC sind die Längen der Seiten a und c gegeben.
Aufgabenstellung:
Geben Sie eine Formel für die Berechnung des Winkels α an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1059
AHS - 1_059 & Lehrstoff: AG 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rechtwinkeliges Dreieck
Gegeben ist ein rechtwinkeliges Dreieck wie in nebenstehender Skizze.
- Aussage 1: \(\tan \left( \alpha \right) = \dfrac{5}{{13}}\)
- Aussage 2: \(\cos \left( \alpha \right) = \dfrac{{13}}{{12}}\)
- Aussage 3: \(\sin \left( \gamma \right) = \dfrac{5}{{13}}\)
- Aussage 4: \(\cos \left( \gamma \right) = \dfrac{{12}}{{13}}\)
- Aussage 5: \(\tan \left( \gamma \right) = \dfrac{{12}}{5}\)
Aufgabenstellung:
Welche der obenstehenden Aussagen sind für das abgebildete Dreieck zutreffend? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1488
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vermessung einer unzugänglichen Steilwand
Ein Steilwandstuck CD mit der Höhe \(h = \overline {CD}\) ist unzugänglich. Um h bestimmen zu können, werden die Entfernung e = 6 Meter und zwei Winkel α = 24° und β = 38° gemessen. Der Sachverhalt wird durch die nachstehende (nicht maßstabgetreue) Abbildung veranschaulicht.
Aufgabenstellung:
Berechnen Sie die Höhe h des unzugänglichen Steilwandstücks in Metern!
Aufgabe 1368
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigungswinkel
Das nachstehend abgebildete Verkehrszeichen besagt, dass eine Straße auf einer horizontalen Entfernung von 100 m um 7 m an Höhe gewinnt.
Aufgabenstellung:
Geben Sie eine Formel zur Berechnung des Gradmaßes des Steigungswinkels α dieser Straße an!