sin cos tan im rechtwinkeligen Dreieck
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4026
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil b
Ein Strahlengang durch ein Glasprisma einer Filmkamera kann folgendermaßen dargestellt werden:
Hinweis: Die Skizze ist nicht maßstabsgetreu!
\(\eqalign{ & a = 0,50{\text{ cm}} \cr & x = 0,55{\text{ cm}} \cr & \beta = 40^\circ \cr & \gamma = 68^\circ \cr} \)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge z des Strahlengangs.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge y des Strahlengangs.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge x + y + z des Strahlengangs
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4013
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgaben
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Bodensee - Aufgabe A_253
Teil a
Der Bodensee misst in seiner längsten Ausdehnung von Bregenz (Br) bis Bodman (Bo) 66 Kilometer (km). Aufgrund der Erdkrümmung ist von Bregenz aus das Seeufer bei Bodman nicht zu sehen (siehe nachstehende nicht maßstabgetreue Skizze):
mit
r | Erdradius (6 371 km) |
b | Bogenlänge, entspricht der Entfernung zwischen Bregenz und Bodman |
M | Erdmittelpunkt |
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Winkel φ.
[1 Punkt]
Um bei sehr guten Sichtverhältnissen von Bregenz aus das Seeufer bei Bodman sehen zu können, muss sich ein Beobachter in Bregenz mindestens auf einer Höhe h über dem Seeniveau befinden (siehe obige nicht maßstabgetreue Skizze).
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Höhe h.
[1 Punkt]
Aufgabe 4128
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2018 - Teil-A Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kugelstoßen - Aufgabe A_268
Teil b
Kugelstoßen ist eine Disziplin bei den Olympischen Sommerspielen. Eine Metallkugel muss so weit wie möglich aus einem Kreis in einen vorgegebenen Aufschlagbereich gestoßen werden. Der Aufschlagbereich ist in der nachstehenden Abbildung in der Ansicht von oben dargestellt (alle Angaben in Metern).
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den in der obigen Abbildung markierten Winkel α.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Markieren Sie in der obigen Abbildung diejenige Strecke, deren Länge durch den folgenden Ausdruck berechnet werden kann:
\(\dfrac{6}{{\tan \left( {\dfrac{\alpha }{2}} \right)}}\)
[1 Punkt]
Aufgabe 4072
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Altenpflege - Aufgabe A_262
Teil d
Eine Rampe der Länge x überwindet 3 Stufen. Jede Stufe hat die Höhe h und die Breite b.
- Aussage 1: \(x = \dfrac{{2 \cdot b}}{{\cos \left( \alpha \right)}}\)
- Aussage 2: \(x = \dfrac{{3 \cdot h \cdot \sin \left( \alpha \right)}}{{2 \cdot b}}\)
- Aussage 3: \(x = \left( {2 \cdot b + y} \right) \cdot tan\left( \alpha \right)\)
- Aussage 4: \(x = \dfrac{{2 \cdot b + y}}{{\cos \left( \alpha \right)}}\)
- Aussage 5: \(x = \dfrac{{3 \cdot h + \sin \left( \alpha \right)}}{{2 \cdot b}}\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf den dargestellten Sachverhalt zutreffende Formel an.
[1 aus 5] [1 Punkt]
Aufgabe 4208
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eiffelturm - Aufgabe A_287
Teil c
Von Punkt P aus sieht man den höchsten Punkt des H Meter hohen Eiffelturms unter dem Höhenwinkel α und die h Meter hohe Spitze unter dem Sehwinkel β (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht. [Lückentext]
[1 Punkt]
Die Höhe _____1_____ ist durch den Ausdruck _____2____ gegeben
1. Lücke:
- Aussage A: H
- Aussage B: h
- Aussage C: H-h
2. Lücke:
- Aussage I: \(d \cdot \tan \left( {\alpha + \beta } \right)\)
- Aussage II: \(d \cdot \tan \left( {\alpha - \beta } \right)\)
- Aussage III: \(d \cdot \tan \left( \beta \right)\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4215
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Standseilbahnen - Aufgabe A_290
Teil a
Die Wägen von Standseilbahnen fahren auf Schienen und können große Steigungen bewältigen. Eine bestimmte Standseilbahn hat eine konstante Steigung von 40 %. Der Streckenverlauf dieser Bahn soll im unten stehenden Koordinatensystem dargestellt werden. Die beiden Achsen des Koordinatensystems haben die gleiche Skalierung. Die Talstation der Bahn liegt im Koordinatenursprung. Nur einer der Punkte A, B, C, D und E kommt als Bergstation der Bahn infrage.
- Aussage 1: A
- Aussage 2: B
- Aussage 3: C
- Aussage 4: D
- Aussage 5: E
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie denjenigen Punkt an, der als Bergstation infrage kommt.
[1 aus 5] [1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, welchen Höhenunterschied ein Wagen dieser Bahn überwindet, wenn er von der Talstation bis zur Bergstation eine Fahrstrecke von 180 m zurücklegt.
[1 Punkt]
Aufgabe 4200
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baumhaus - Aufgabe A_116
Teil a
Eine Familie plant, ein Baumhaus aus Holz zu errichten. Der Baum dafür steht in einem horizontalen Teil des Gartens. Eine 3,2 m lange Leiter wird angelehnt und reicht dann vom Boden genau bis zum Einstieg ins Baumhaus in einer Hohe von 2,8 m.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie denjenigen Winkel, unter dem die Leiter gegenüber dem horizontalen Boden geneigt ist.
[1 Punkt]
Aufgabe 4086
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sternbild Großer Wagen - Aufgabe B_014
Die nachfolgende Abbildung zeigt eine schematische Darstellung des Sternbilds Großer Wagen.
Teil a
Astronomen verwenden verschiedene Koordinatensysteme. In einem Koordinatensystem mit der Erde im Koordinatenursprung O kann die Position eines Sterns S mithilfe der Winkel α und δ sowie der Entfernung OS von der Erde angegeben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung der Koordinate zs aus dem Winkel δ und der Entfernung \(\overline {OS} \)
zs=
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den Koordinaten xS und yS jeweils den zutreffenden Ausdruck aus A bis D zu.
[2 zu 4]
- Aussage 1: \(\overline {OS} \cdot \sin \left( \alpha \right) \cdot \sin \left( \delta \right)\)
- Aussage 2: \(\overline {OS} \cdot \cos \left( \alpha \right) \cdot \sin \left( \delta \right)\)
- Aussage 3: \(\overline {OS} \cdot \sin \left( \alpha \right) \cdot \cos \left( \delta \right)\)
- Aussage 4: \(\overline {OS} \cdot \cos \left( \alpha \right) \cdot \cos \left( \delta \right)\)
[1 Punkt]
Aufgabe 4117
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Höhe der Wolkenuntergrenze - Aufgabe B_110
Die Höhe der Wolkenuntergrenze kann auf verschiedene Arten näherungsweise bestimmt werden.
Teil a
Die Höhe der Wolkenuntergrenze wurde früher mithilfe eines Nachtwolkenscheinwerfers bestimmt. Folgende Anweisung musste man dabei befolgen: „Platzieren Sie auf einer horizontalen Ebene den Scheinwerfer in einem Punkt P so, dass sein Lichtstrahl senkrecht nach oben gerichtet ist. Dort erzeugt er auf der Wolkenuntergrenze in der Höhe h einen punktförmigen Lichtfleck L. Begeben Sie sich in einen anderen Punkt Q dieser Ebene und messen Sie die Streckenlänge PQ. Messen Sie den Höhenwinkel α, unter dem der Lichtfleck L nun von Punkt Q aus gesehen wird.“
1. Teilaufgabe - Bearbeitungszeit 5:40
Veranschaulichen Sie den beschriebenen Sachverhalt mithilfe einer Skizze. Beschriften Sie P, Q, L, h und α in dieser Skizze.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel, mit deren Hilfe man die Höhe der Wolkenuntergrenze h mit den gemessenen Größen bestimmen kann.
h = ________
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4168
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnverkehr in Österreich - Aufgabe A_283
Teil b
Die Fahrtstrecke im Semmering-Basistunnel wird 27,3 Kilometer lang sein und eine (als konstant angenommene) Steigung von 0,84 % haben. In der folgenden Berechnung des Höhenunterschieds Δh in Metern auf dieser Fahrtstrecke ist genau ein Fehler passiert:
Steigungswinkel:
\(\eqalign{ & \alpha = \arctan \left( {0,0084} \right) = 0,48127^\circ \cr & \Delta h = \dfrac{{27300{\text{ m}}}}{{\sin \left( \alpha \right)}} = 3\,\,250\,\,114,6{\text{ m}} \cr} \)
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie die Berechnung und das Ergebnis richtig.
[1 Punkt]
Aufgabe 4183
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2019 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewitter
Teil b
Um Gebäude vor Blitzeinschlägen zu schützen, werden Blitzableiter verwendet. Dabei wird eine Metallstange, die sogenannte Fangstange, auf dem Gebäude senkrecht montiert. Der höchste Punkt einer solchen Fangstange kann als Spitze eines drehkegelförmigen Schutzbereichs angesehen werden. Alle Objekte, die sich vollständig innerhalb dieses Schutzbereichs befinden, sind vor direkten Blitzeinschlägen geschützt.
- h … Höhe der Fangstange
- α … Schutzwinkel
- r … Radius der Grundfläche des Schutzbereichs
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung des Radius r aus α und h.
r=
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Auf einem Flachdach ist eine 2 m hohe Fangstange senkrecht montiert. 3 m vom Fußpunkt der Fangstange entfernt steht eine 1,2 m hohe Antenne senkrecht auf dem Flachdach. Der Schutzwinkel beträgt 77°.
Überprüfen Sie nachweislich, ob sich diese Antenne vollständig innerhalb des Schutzbereichs befindet.
[1 Punkt]
Aufgabe 4238
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 16. September 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rund um die Heizung - Aufgabe A_140
Teil a
Die nachstehende Abbildung zeigt einen waagrecht gelagerten, zylinderförmigen Öltank in der Ansicht von vorne. Der Punkt M ist der Mittelpunkt des dargestellten Kreises mit dem Radius r .
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie mithilfe von r und α eine Formel zur Berechnung der Füllhöhe h.
h =
[1 Punkt]
Für das Volumen V eines 2 m langen Öltanks gilt:
\(V = {r^2} \cdot \pi \cdot 2\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, um wie viel Prozent das Volumen größer wäre, wenn der Radius um 20 % größer wäre.
[1 Punkt]