Geogebra Löst Gleichung exakt
Geogebra bietet die Möglichkeit Gleichungen exakt zu lösen.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4018
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil c
Der Graph der Polynomfunktion p mit \(p\left( x \right) = a \cdot {x^4} + b \cdot {x^3} + c \cdot {x^2} + d \cdot x + e\) verläuft durch die folgenden 5 Punkte:
\(\eqalign{ & A = \left( {0\left| {1,8} \right.} \right) \cr & B = \left( {0,25\left| {2,1} \right.} \right) \cr & C = \left( {0,5\left| {0,4} \right.} \right) \cr & D = (0,75\left| {0,7)} \right. \cr & E = \left( {1\left| {0,5} \right.} \right) \cr} \)
mit
x | horizontale Koordinate in Metern (m) |
p(x) | vertikale Koordinate in Millimetern (mm) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten dieser Polynomfunktion p auf.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Koeffizienten dieser Polynomfunktion p.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4004
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fußballspielen im Park - Aufgabe A_250
Teil b
Roland und Julia spielen im Park Fußball. Roland legt den Ball auf die horizontale Wiese, nimmt Anlauf und schießt. Die Flugbahn des Balls kann näherungsweise durch den Graphen einer Polynomfunktion 3. Grades h beschrieben werden. Dabei wird der Ball als punktförmig angenommen.
\(h\left( x \right) = - 0,003 \cdot {x^3} + 0,057 \cdot {x^2}{\text{ mit }}x \geqslant 0\)
x | horizontale Entfernung des Balls von der Abschussstelle in Metern (m) |
h(x) | Höhe des Balls über dem Boden an der Stelle x in m |
Julia fängt den Ball aus einer Höhe von 1,80 m.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die beiden horizontalen Entfernungen von der Abschussstelle, an denen Julia sich dabei befinden kann. [1 Punkt]
Aufgabe 6031
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion
\(f:x \mapsto 20 \cdot \ln \left( {\dfrac{{20x}}{{1 - x}}} \right){\rm{ mit }}{D_f} = \left] {0;1} \right[\).
Der Graph von f wird mit Gf bezeichnet.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie die Nullstelle von f.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Untersuchen Sie das Verhalten von f an den Grenzen von Df
3. Teilaufgabe a.3) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Gleichungen der Asymptoten von Gf an.
4. Teilaufgabe b.1) 1 BE - Bearbeitungszeit: 2:20
Begründen Sie, dass f in Df umkehrbar ist.
5. Teilaufgabe b.2) 2 BE - Bearbeitungszeit: 4:40
Untersuchen Sie das Krümmungsverhalten von Gf .
6. Teilaufgabe b.3) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Gleichung der Tangente w an Gf im Wendepunkt W von Gf .
(zur Kontrolle: x-Koordinate von W: 1/2)
Verschiebt man Gf so, dass der Wendepunkt W im Ursprung liegt, erhält man den Graphen der Funktion g.
7. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Geben Sie den Funktionsterm von g an.
8. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Welche Folgerung für Gf ergibt sich aus der Tatsache, dass der Graph von g punktsymmetrisch bezüglich des Koordinatenursprungs ist?
9. Teilaufgabe d) 4 BE - Bearbeitungszeit: 9:20
Zeichnen Sie Gf und die Tangente w unter Berücksichtigung der bisherigen Ergebnisse in ein geeignet skaliertes Koordinatensystem ein.
Gf schließt mit den Koordinatenachsen und der Tangente w ein Flächenstück mit dem Inhalt A ein.
10. Teilaufgabe e) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie A.
Aufgabe 4056
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Straßenbau - Aufgabe B_408
Teil a
Zwischen zwei Punkten A und B soll eine Verbindungsstraße errichtet werden. Die nachstehende Abbildung zeigt den Bauplan in einem Koordinatensystem in der Draufsicht (von oben betrachtet).
- Zu Punkt A führt eine Straße, die durch den Graphen der linearen Funktion f dargestellt ist.
- Zu Punkt B führt eine Straße, die durch den Graphen der linearen Funktion g dargestellt ist.
Die neue Straße, die A und B verbindet, soll durch den Graphen einer Polynomfunktion h mit \(h\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\) beschrieben werden. Diese Polynomfunktion soll im Punkt A die gleiche Steigung wie f und im Punkt B die gleiche Steigung wie g haben.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie ein Gleichungssystem zur Ermittlung der Koeffizienten dieser Polynomfunktion h.
[2 Punkte]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Koeffizienten von h.
[1 Punkt]
Aufgabe 4435
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil b
Ein rechteckiges Blumenbeet mit den Seitenlangen b und h ist in einen Bereich für Rosen und einen Bereich für Tulpen unterteilt. Die Begrenzungslinie zwischen diesen Bereichen kann modellhaft durch den Graphen der Funktion f beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie mithilfe der obigen Abbildung eine Formel zur Berechnung des Inhalts A der grau markierten Fläche auf.
A =
[0 / 1 P.]
f ist eine Polynomfunktion 3. Grades mit
\(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
Folgende Punkte liegen auf dem Graphen von f: (3 | 0,8), (5 | 2,7), (7 | 3,7), (9 | 2,3).
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie mithilfe dieser Punkte die Koeffizienten a, b, c und d.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.