Geogebra InversNormal Befehl
Der Geogebra Befehl InversNormal (μ, σ , P] berechnet jene Zufallsvariable X, welche die gegebene Wahrscheinlichket P als Fläche unter der Gauß'schen Glockenkurve besitzt.
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4024
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_413
Teil e
Der Wein wird mit einem manuellen Reihenfüller in Flaschen abgefüllt. Das Füllvolumen der Flaschen kann dabei als annähernd normalverteilt mit dem Erwartungswert μ = 1 005 Milliliter (ml) und der Standardabweichung σ = 5 ml angenommen werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie dasjenige um μ symmetrische Intervall, in dem 95 % der Füllvolumina liegen.
[1 Punkt]
In der nachstehenden Abbildung ist der Graph der Dichtefunktion dieser Normalverteilung dargestellt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit, dass eine zufällig ausgewählte Flasche ein Füllvolumen von mindestens 1 000 ml hat.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4214
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kochzeit von Eiern - Aufgabe A_289
Teil c
Die Kochzeit für weich gekochte Eier ist unter bestimmten Bedingungen annähernd normalverteilt mit dem Erwartungswert μ = 5,5 min und der Standardabweichung σ = 0,35 min.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie dasjenige um den Erwartungswert symmetrische Intervall, in dem die Kochzeit für ein zufällig ausgewähltes Ei mit einer Wahrscheinlichkeit von 90 % liegt.
[1 Punkt]
Die Kochzeit für hart gekochte Eier ist unter bestimmten Bedingungen annähernd normalverteilt mit dem Erwartungswert μ = 9 min und der Standardabweichung σ = 0,5 min. Der Graph der zugehörigen Dichtefunktion ist in der nachstehenden Abbildung dargestellt.
X ... Kochzeit für hart gekochte Eier in min
2. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf diese Dichtefunktion nicht zutreffende Aussage an.
[1 aus 5] [1 Punkt]
- Aussage 1: \(P\left( {X \ge 9} \right) = 0,5\)
- Aussage 2: \(P\left( {X \ge 10} \right) = P\left( {X \le 8} \right)\)
- Aussage 3: \(P\left( {8,5 \le X \le 9,5} \right) \approx 0,68\)
- Aussage 4: \(P\left( {8 \le X \le 10} \right) = 1 - P\left( {X \ge 10} \right)\)
- Aussage 5: \(P\left( {7 \le X \le 11} \right) \approx 1\)
Aufgabe 4432
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flughafen - Aufgabe B_506
Teil b
Der Kerosinverbrauch eines bestimmten Flugzeugs auf einer bestimmten Strecke kann als annähernd normalverteilt angenommen werden. Der Erwartungswert betragt μ = 845 L/100 km und die Standardabweichung beträgt σ = 25 L/100 km.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie dasjenige um μ symmetrische Intervall, in dem der Kerosinverbrauch mit einer Wahrscheinlichkeit von 90 % liegt.
[0 / 1 P.]
Nach Reparaturarbeiten soll der Erwartungswert des Kerosinverbrauchs mithilfe eines Konfidenzintervalls neu geschätzt werden. Dabei wird angenommen, dass die Standardabweichung gleich geblieben ist. Nach den Reparaturarbeiten wurde der Kerosinverbrauch in L/100 km von einer Zufallsstichprobe von 10 Flügen auf dieser Strecke gemessen:
844 | 840 | 864 | 820 | 788 | 858 | 832 | 817 | 839 | 796 |
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie das zweiseitige 99-%-Konfidenzintervall für den Erwartungswert des Kerosinverbrauchs nach den Reparaturarbeiten.
[0 / 1 P.]
Aufgabe 4476
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kosmetikartikel - Aufgabe A_306
Teil a
Ein Parfum wird in bestimmte Fläschchen abgefüllt. Das Füllvolumen wird dabei als annähernd normalverteilt mit der Standardabweichung σ = 1,5 ml angenommen. In der nachstehenden Abbildung ist der Graph der zugehörigen Verteilungsfunktion dargestellt.
1. Teilaufgabe - Bearbeitungszeit 05:40
Lesen Sie aus der obigen Abbildung den Erwartungswert μ des Füllvolumens ab.
μ = ml
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie dasjenige um μ symmetrische Intervall, in dem das Füllvolumen eines zufällig ausgewählten Fläschchens mit einer Wahrscheinlichkeit von 80 % liegt.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit, dass das Füllvolumen eines zufällig ausgewählten Fläschchens höchstens 76 ml beträgt.
[0 / 1 P.]
Grundkompetenzen
Geogebra InversNormal (Befehl)
- InversNormal[ <Mittelwert>, <Standardabweichung>, <Wahrscheinlichkeit> ]
- Mit dem Befehl InversNormal (μ, σ , P] berechnet man jene Zufallsvariable X, welche die gegebene Wahrscheinlichket P als Fläche unter der Gauß'schen Glockenkurve besitzt.
Beispiel
- Gegeben:
- Erwartungswert μ = 1005 mm
- Standardabweichung σ = 5 mm
- Fläche = 0,025 bzw. Wahrscheinlichkeit P = 2,5%
- Gesucht:
- Zufallsvarialble X
- Ausführung:
- Syntax: InversNormal[ <Mittelwert>, <Standardabweichung>, <Wahrscheinlichkeit> ]
- Geogebra - CAS Ansicht: InversNormal[1005, 5, 0.025] → X=x1 = 995,25
- Lösung
- Für die Zufallsvariable X=x1 = 999,25 mm beträgt bei einer μ = 1005 mm und σ = 5 mm verteilten Normalverteilung die Wahrscheinlichkeit 2,5% bzw. die Fläche unter der Gauß'schen Glockenkurve 0,025
Beispiel
- Gegeben:
- Erwartungswert μ = 1005 mm
- Standardabweichung σ = 5 mm
- Fläche = 0,95 bzw. Wahrscheinlichkeit P = 95%
- Gesucht:
- Ermitteln Sie dasjenige um μ symmetrische Intervall, in dem 95 % der Zufallswerte liegen.
- Ausfühung:
- untere Grenze: Fläche links von der unteren Grenze: \(\dfrac{{1 - 0,95}}{2} = 0,025\)
- Syntax: InversNormal[ <Mittelwert>, <Standardabweichung>, <Wahrscheinlichkeit> ]
- Geogebra - CAS Ansicht: InversNormal[1005, 5, 0.025] → x1 = 995,25
- obere Grenze: Fläche links von der oberen Grenze: \(\dfrac{{1 - 0,95}}{2} + 0,95 = 0,975\)
- Syntax: InversNormal[ <Mittelwert>, <Standardabweichung>, <Wahrscheinlichkeit> ]
- Geogebra - CAS Ansicht: InversNormal[1005, 5, 0.975] → x2 = 1014,75
- untere Grenze: Fläche links von der unteren Grenze: \(\dfrac{{1 - 0,95}}{2} = 0,025\)
- Lösung:
- Das symmetrische Intervall, in dem mit einer Wahrscheinlichkeit P=95% alle Zuvallsvariablen X einer μ = 1005 mm und σ = 5 mm verteilten Normalverteilung liegen, lautet: [995,2; 1 014,8]
- Grafische Darstellung
-
Der Befehl mit der Syntax: Normal[μ, σ, x, false] erzeugt eine Darstellung der Wahrscheinlichkeitsdichtefunktion der Normalverteilung f
-
Geogebra Grafik-Ansicht: Normal(1005, 5, x, false)
-
-
Der Befehlt mit der Syntax: Integral(<Funktion>, <untere Grenze>, <obere Grenze>) berechnet das bestimmte Integral der Funktion f zwischen unterer und oberer Grenze und schattiert die Fläche über die integriert wurde.
-
Geogebra Grafik-Ansicht: Integral(f, 995.25, 1014.75)
-
-
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.