BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_T_3.2
Folgende Funktionen und deren Verknüpfungen grafisch darstellen, interpretieren, zu Berechnungen verwenden und erklären: lineare Funktion, quadratische Funktion, Wurzelfunktion, Potenzfunktion, Exponentialfunktion (Wachstums-, Sättigungs- und Abklingfunktion), Logarithmusfunktion; den Einfluss der Parameter a, b und c bei a · f(x + b) + c verstehen und anwenden, wenn f eine der eben genannten Funktionen ist (Verschiebung im Koordinatensystem und Skalierung)
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4017
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil b
1. Teilaufgabe - Bearbeitungszeit 5:40
Um Unebenheiten eines Bodens festzustellen, wird eine Messlatte verwendet.
Begründen Sie, warum der Grad der in der obigen Abbildung dargestellten Polynomfunktion p größer oder gleich 4 sein muss.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4037
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinkende Kugeln - Aufgabe B_407
Teil a
Die Sinkgeschwindigkeit einer in einer Flüssigkeit sinkenden Metallkugel kann durch eine Funktion v beschrieben werden: \(v\left( t \right) = g \cdot \tau \cdot \left( {1 - {e^{ (- \dfrac{t}{\tau })}}} \right){\text{ mit }}t \geqslant 0\)
wobei:
t | Zeit ab Beginn des Sinkens in Sekunden (s) |
v(t) | Sinkgeschwindigkeit zur Zeit t in Metern pro Sekunde (m/s) |
τ | Zeitkonstante in s mit τ > 0 |
g | Erdbeschleunigung (g ≈ 9,81 m/s2) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie mathematisch, warum die Sinkgeschwindigkeit ständig zunimmt.
[1 Punkt]
Aufgabe 4038
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinkende Kugeln - Aufgabe B_407
Teil b
Eine Kugel K2 beginnt 1 Sekunde nach einer Kugel K1 zu sinken. In der nachstehenden Grafik sind die Sinkgeschwindigkeit v1 der Kugel K1 und die Sinkgeschwindigkeit v2 der Kugel K2 dargestellt. Die Zeitkonstante der Sinkgeschwindigkeit v2 beträgt τ2 = 0,8 s.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der Funktion v2 für t ≥ 1.
[1 Punkt]
Zum Zeitpunkt t0 ist die Beschleunigung der Kugel K2 größer als die Beschleunigung der Kugel K1.
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie, wie man dies in der obigen Grafik erkennen kann.
[1 Punkt]
Aufgabe 4336
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bahnsteige - Aufgabe B_446
Teil a
Auf dem Bahnhof Linz wird eine Betonkonstruktion zur Überdachung eines Bahnsteigs verwendet. Die nachfolgende Abbildung zeigt eine vereinfachte Darstellung der Betonkonstruktion.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Formel zur Berechnung des Inhalts A der grau markierten Fläche.
A =
[1 Punkt]
Der in der obigen Abbildung dargestellte Graph der Funktion f wird beschrieben durch:
\(f\left( x \right) = \sqrt {x - a} + b{\text{ mit x}} \geqslant {\text{a}}\)
x, f(x) | Koordinaten in m |
a, b | Parameter |
2. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung die Parameter a und b der Funktion f ab.
- a =
- b =
[1 Punkt]
Aufgabe 4390
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil a
Ein Unternehmen produziert Blumentöpfe. Der Außendurchmesser eines solchen Blumentopfs beträgt 40 cm. Auch die Gesamthöhe des Blumentopfs beträgt 40 cm. (Siehe nachstehende Abbildung der Begrenzungslinie. )
Für die Funktion f mit f(x) = y gilt:
\(y = \dfrac{{37}}{{{{19}^6}}} \cdot {x^6} + 3{\text{ mit }} - 19 \leqslant x \leqslant 19\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum f eine gerade Funktion ist.
[1 Punkt]
Die Innenwand des Blumentopfs entsteht durch Rotation des oben dargestellten Graphen von f um die y-Achse.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie das Innenvolumen des Blumentopfs.
[2 Punkte]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4403
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil a
Die nachstehende Abbildung zeigt modellhaft die Wassertemperatur eines Sees in Abhängigkeit von der Tiefe x im Frühling (TF) und im Winter (TW). Die Wassertemperatur nähert sich in beiden Fällen asymptotisch dem Wert 4 °C.
Die Wassertemperatur des Sees im Frühling kann in Abhängigkeit von der Tiefe x näherungsweise durch eine Exponentialfunktion
\({T_F}{\text{ mit }}{T_F}\left( x \right) = a + b \cdot {e^{c \cdot x}}\)
beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 11:20
Ermitteln Sie mithilfe der obigen Abbildung die Parameter a, b und c der Funktion TF.
[2 Punkte]
Für ein bestimmtes x1 gilt:
\({T_F}\left( {{x_1}} \right) - {T_W}\left( {{x_1}} \right) = 5\)
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie x1 mithilfe der obigen Abbildung.
[1 Punkt]
Aufgabe 4404
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil b
In der Limnologie wird für bestimmte Zwecke eine Funktion g verwendet:
\(g\left( x \right) = a \cdot {\left( {1 - \dfrac{x}{b}} \right)^{ - 1}}\)
a,b | positive Parameter |
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie diejenige Aussage an, die auf die Funktion g nicht zutrifft.
[1 aus 5] [1 Punkt]
- Aussage 1: g(0) = a
- Aussage 2: Für 0 < x < b gilt: g(x) > a
- Aussage 3: g ist für 0 < x < b monoton steigend.
- Aussage 4: Die Funktion g hat eine Polstelle.
- Aussage 5: g(b) = 0
Aufgabe 4405
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil c
Die Dichte von Wasser in Abhängigkeit von der Temperatur kann unter bestimmten Bedingungen näherungsweise durch die Funktion ϱ beschrieben werden:
\(\rho \left( T \right) = a - b \cdot {\left( {T - 4} \right)^2}{\text{ mit }}0 < \rho \leqslant 10\)
T |
Temperatur in °C |
\(\rho \left( T \right)\) | |
a,b |
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Funktionsgleichung die Koordinaten des Scheitelpunkts S von ϱ ab.
S = ( | )
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie mathematisch, dass der Scheitelpunkt ein Hochpunkt der Funktion ϱ ist.
[1 Punkt]
Es gilt: a = 999,972 und b = 0,007
Die Gleichung einer Tangente an den Graphen der Funktion ϱ lautet:
\(f\left( T \right) = 0,028 \cdot T + d\)
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Parameter d.
[1 Punkt]
Jemand verwendet zur Berechnung der Dichte von Wasser bei 10 °C die obige Funktion ϱ mit den Parametern a = 999,972 und b = 0,007. Die Dichte von Wasser bei 10 °C beträgt jedoch laut einer Tabelle 999,700 kg/m3.
4. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Betrag des absoluten Fehlers bei Verwendung der Funktion ϱ anstelle des Tabellenwerts.
[1 Punkt]
Aufgabe 4429
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewächshäuser - Aufgabe B_505
Teil a
Auf der Insel Mainau steht ein besonderes Gewächshaus. Die nachstehende Abbildung zeigt die Vorderseite des Gewächshauses in einem Koordinatensystem. Die Vorderseite ist dabei symmetrisch zur y-Achse.
Der Graph der Funktion g ergibt sich durch Verschiebung des Graphen der Funktion f um 7,5 m nach rechts und 5,8 m nach unten.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Rechenzeichen und Zahlen in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
\(g\left( x \right) = f\left( {x\fbox{}\,\,\boxed{}} \right)\,\,\boxed{}\,\,\boxed{}\)
Die Funktion f ist gegeben durch:
\(f\left( x \right) = \dfrac{{87}}{5} - \dfrac{{116}}{{1125}} \cdot {x^2}{\text{ mit }}0 \leqslant x \leqslant 7,5\)
x, f(x) |
Koordinaten in m |
An der Stelle x = 7,5 schließt die Tangente an den Graphen von f mit der horizontalen Tangente an den Graphen von g den stumpfen Winkel α ein (siehe obige Abbildung).
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Winkel α.
[0 / 1 P.]
Die in der obigen Abbildung eingezeichneten Graphen der Funktionen f, g und h haben jeweils die gleiche Lange.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Umfang der von der dargestellten Kontur (=äußere Linie eines Körpers) begrenzten Fläche.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4442
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Meerwasser und mehr Wasser - Aufgabe B_509
Teil b
Während eines Regenschauers wird der Wasserstand in einem bestimmten, anfangs leeren zylinderförmigen Gefäß gemessen. Die Funktion h′ beschreibt modellhaft die momentane Änderungsrate des Wasserstands in diesem Gefäß (siehe nachstehende Abbildung).
\(h'\left( t \right) = 1,5 \cdot t \cdot {e^{ - 0,3 \cdot t}}{\text{ mit 0}} \leqslant {\text{t}} \leqslant {\text{15}}\)
t | Zeit in min |
h'(t) |
momentane Änderungsrate des Wasserstands zur Zeit t in mm/min |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie dasjenige Zeitintervall, in dem gemäß diesem Modell die momentane Änderungsrate des Wasserstands mindestens 1 mm/min beträgt.
[0 / 1 P.]
Aufgabe 4495
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Carport - Aufgabe B_522
Ein Carport soll durch verschiedene Modelle beschrieben werden.
Teil a
Im Modell A wird ein Teil des Carports durch die Graphen der Funktionen f, g und h beschrieben.
(siehe nachstehende Abbildung).
Der Graph der Funktion f mit \(f\left( x \right) = a \cdot \sqrt x \) beschreibt zwischen den Punkten A = (0 | 0) und B den Verlauf einer Begrenzungslinie. Der Graph der Funktion h ergibt sich durch Verschiebung des Graphen der Funktion f um 1 m nach links und um 0,5 m nach unten.
1. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie die fehlenden Zahlen und Rechenzeichen in die dafür vorgesehenen Kästchen ein.
\(h\left( x \right) = a \cdot \sqrt {x\boxed{}\boxed{}} \boxed{\boxed{}}\boxed{}\)
[0 / 1 P.]
Der Graph der Funktion g mit \(g\left( x \right) = b \cdot \sqrt x \) beschreibt zwischen den Punkten A = (0 | 0) und E = (0,4 | –1,62) den Verlauf einer weiteren Begrenzungslinie.
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie den Parameter b.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie die zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: \(h'\left( {0,1} \right) > f'\left( {0,1} \right)\)
- Aussage 2: \(f'\left( {0,1} \right) - g'\left( {0,1} \right) = 0\)
- Aussage 3: \(f'\left( 0 \right) = 1\)
- Aussage 4: \(f'\left( {0,1} \right) = h'\left( { - 0,9} \right)\)
- Aussage 5: \(g'\left( {0,4} \right) < g'\left( {0,1} \right)\)
Aufgabe 4497
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Martinigläser - Aufgabe B_523
In der nebenstehenden Abbildung ist ein Martiniglas dargestellt. Der obere Teil des Martiniglases kann modellhaft als Drehkegel mit dem Durchmesser D und der Höhe H betrachtet werden.
Teil a
In der unten stehenden nicht maßstabgetreuen Abbildung ist ein Modell dieses Martiniglases dargestellt. Der Drehkegel entsteht durch Rotation des Graphen der linearen Funktion f um die x-Achse.
1. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie unter Verwendung von H und D die fehlenden Ausdrücke in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe von H und D eine Gleichung der Funktion f auf.
f(x) =
[0 / 1 P.]
Vx ist das Volumen des Drehkegels, der bei Rotation des Graphen der Funktion f um die x-Achse entsteht.
3. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Formel zur Berechnung von Vx auf.
Vx =
[0 / 1 P.]
Der obere Teil eines bestimmten Martiniglases wird durch Rotation des Graphen der Funktion g im Intervall [0; 75] um die x-Achse modelliert.
\(g\left( x \right) = \dfrac{{13}}{{17}} \cdot x\)
x, g(x) |
Koordinaten in mm |
Dieses Martiniglas wird mit einer Flüssigkeitsmenge von 2 dl befüllt.
4. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die zugehörige Füllhöhe (gemessen von der Spitze des Drehkegels).
[0 / 1 P.]