Bayern Mathematik Abitur 2015 - Prüfungsteil A+B - mit CAS - Gruppe 1
Aufgabe 6016
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Produkt einer Polynomfunktion mit einer Logarithmusfunktion
Gegeben ist die Gleichung
\(\left( {4x - 3} \right) \cdot \ln \left( {{x^2} - 5x + 7} \right) = 0\)
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie für \(x \in {\Bbb R}\) Lösungen der Gleichung
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6001
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Graph und Funktionsgleichung ganzrationaler Funktionen
Gegeben sind die in \({\Bbb R}\) definierten Funktionen f, g und h mit
\(\eqalign{ & f\left( x \right) = {x^2} - x + 1 \cr & g\left( x \right) = {x^3} - x + 1 \cr & h\left( x \right) = {x^4} + {x^2} + 1 \cr} \)
Die unten stehende Abbildung zeigt den Graphen einer der drei Funktionen.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Geben Sie an, um welche Funktion es sich handelt.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass der Graph die anderen beiden Funktionen nicht darstellt.
Die erste Ableitungsfunktion von h ist h‘.
3. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie den Wert von \(\int\limits_0^1 {h'\left( x \right)\,\,dx} \).
Aufgabe 6017
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Eigenschaften einer Sinusfunktion
Gegeben ist die in \({\Bbb R}\) definierte Funktion \(f:x \mapsto \sin \left( {2x} \right)\).
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Amplitude der Funktion f an.
2. Teilaufgabe a.2) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Periode der Funktion f an.
3. Teilaufgabe a.3) 1 BE - Bearbeitungszeit: 2:20
Geben Sie die Wertemenge der Funktion f an.
Aufgabe 6007
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Funktionsterm aus gegebenen Eigenschaften eruieren
Geben Sie den Term einer Funktion an, die die angegebene Eigenschaft besitzt.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Die Funktion g hat die maximale Definitionsmenge \(\left] { - \infty ;5} \right]\)
Geben Sie den Term einer Funktion an, die die angegebenen Eigenschaften besitzt.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Die Funktion k hat in x=2 eine Nullstelle und in x=-3 eine Polstelle ohne Vorzeichenwechsel. Der Graph von k hat die Gerade mit der Gleichung y =1 als Asymptote.
Aufgabe 6008
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Schar an natürlichen Exponentialfunktionen
Gegeben ist die Schar der in \({\Bbb R}\) definierten Funktionen
\({f_a}:x \mapsto x \cdot {e^{ax}}{\text{ mit }}a \in {\Bbb R}\backslash \left\{ 0 \right\}\).
1. Teilaufgabe a) 4 BE - Bearbeitungszeit: 9:20
Ermitteln Sie, für welchen Wert von a die erste Ableitung von fa an der Stelle x=2 den Wert 0 besitzt.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6009
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Bernoullikette
Bei der Wintersportart Biathlon wird bei jeder Schießeinlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit p beschrieben.
1. Teilaufgabe a.1) 3 BE - Bearbeitungszeit: 7:00
Geben Sie für die folgenden Ereignisse A und B jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von p beschreibt.
- Aussage A: „Der Biathlet trifft bei genau vier Schüssen.“
- Aussage B: „Der Biathlet trifft nur bei den ersten beiden Schüssen.“
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Erläutern Sie anhand eines Beispiels, dass die modellhafte Beschreibung der Schießeinlage durch eine Bernoullikette unter Umständen der Realität nicht gerecht wird.
Aufgabe 6010
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Stochastik
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Produktregel für mehrstufige Zufallsexperimente
Ein Moderator lädt zu seiner Talkshow drei Politiker, eine Journalistin und zwei Mitglieder einer Bürgerinitiative ein. Für die Diskussionsrunde ist eine halbkreisförmige Sitzordnung vorgesehen, bei der nach den Personen unterschieden wird und der Moderator den mittleren Platz einnimmt.
1. Teilaufgabe a) 1 BE - Bearbeitungszeit: 2:20
Geben Sie einen Term an, mit dem die Anzahl der möglichen Sitzordnungen berechnet werden kann, wenn keine weiteren Einschränkungen berücksichtigt werden.
Der Sender hat festgelegt, dass unmittelbar neben dem Moderator auf einer Seite die Journalistin und auf der anderen Seite einer der Politiker sitzen soll.
2. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie unter Berücksichtigung dieser weiteren Einschränkung die Anzahl der möglichen Sitzordnungen.
Aufgabe 6013
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die Gerade g verläuft durch die Punkte A(0 |1| 2) und B(2 | 5 | 6).
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie, dass die Punkte A und B den Abstand 6 haben.
Die Punkte C und D liegen auf g und haben von A jeweils den Abstand 12.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten von C und D.
Die Punkte A, B und E(1| 2 | 5) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden.
3. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40
Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten. Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.
Aufgabe 6014
Abitur 2015 Gymnasium Bayern - Prüfungsteil A - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Betrachtet wird die Pyramide ABCDS mit A(0 | 0 | 0), B(4 | 4 | 2) , C(8 | 0 | 2), D(4 | -4 | 0) und S(1|1| -4) . Die Grundfläche ABCD ist ein Parallelogramm.
Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Weisen Sie nach, dass das Parallelogramm ABCD ein Rechteck ist.
Die Kante \(\left[ {AS} \right]\) senkrecht auf der Grundfläche ABCD. Der Flächeninhalt der Grundfläche beträgt \(24 \cdot \sqrt 2 \)
Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie das Volumen der Pyramide.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 6031
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Gegeben ist die Funktion
\(f:x \mapsto 20 \cdot \ln \left( {\dfrac{{20x}}{{1 - x}}} \right){\rm{ mit }}{D_f} = \left] {0;1} \right[\).
Der Graph von f wird mit Gf bezeichnet.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Bestimmen Sie die Nullstelle von f.
2. Teilaufgabe a.2) 2 BE - Bearbeitungszeit: 4:40
Untersuchen Sie das Verhalten von f an den Grenzen von Df
3. Teilaufgabe a.3) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Gleichungen der Asymptoten von Gf an.
4. Teilaufgabe b.1) 1 BE - Bearbeitungszeit: 2:20
Begründen Sie, dass f in Df umkehrbar ist.
5. Teilaufgabe b.2) 2 BE - Bearbeitungszeit: 4:40
Untersuchen Sie das Krümmungsverhalten von Gf .
6. Teilaufgabe b.3) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Gleichung der Tangente w an Gf im Wendepunkt W von Gf .
(zur Kontrolle: x-Koordinate von W: 1/2)
Verschiebt man Gf so, dass der Wendepunkt W im Ursprung liegt, erhält man den Graphen der Funktion g.
7. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Geben Sie den Funktionsterm von g an.
8. Teilaufgabe c.2) 1 BE - Bearbeitungszeit: 2:20
Welche Folgerung für Gf ergibt sich aus der Tatsache, dass der Graph von g punktsymmetrisch bezüglich des Koordinatenursprungs ist?
9. Teilaufgabe d) 4 BE - Bearbeitungszeit: 9:20
Zeichnen Sie Gf und die Tangente w unter Berücksichtigung der bisherigen Ergebnisse in ein geeignet skaliertes Koordinatensystem ein.
Gf schließt mit den Koordinatenachsen und der Tangente w ein Flächenstück mit dem Inhalt A ein.
10. Teilaufgabe e) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie A.
Aufgabe 6032
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Mithilfe der Funktion f lässt sich modellhaft das Alter einer Fichte in Abhängigkeit von ihrer Stammdicke x in Metern beschreiben, sofern die Fichte zwischen 10 und 120 Jahre alt ist. Als Stammdicke wird der in 1,30m Höhe über dem Erdboden gemessene Durchmesser des Fichtenstamms bezeichnet. Der Funktionsterm
\(f\left( x \right) = 20 \cdot \ln \left( {\dfrac{{20x}}{{1 - x}}} \right)\)
gibt im Modell das Alter der Fichte in Jahren an.
1. Teilaufgabe a) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie auf der Grundlage des Modells das Alter einer Fichte, deren Stammdicke 40 cm beträgt.
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:0
Ermitteln Sie rechnerisch die Werte der Stammdicke, für die das Modell aufgrund des angegebenen Altersbereichs gültig ist.
(zur Kontrolle: von etwa 8 cm bis etwa 95 cm)
3. Teilaufgabe c) 2 BE - Bearbeitungszeit: 4:40
Interpretieren Sie die Bedeutung der y-Koordinate des Wendepunkts W von Gf in Bezug auf die Wachstumsgeschwindigkeit der Stammdicke in Abhängigkeit vom Baumalter.
Die nachfolgende Abbildung zeigt den Graphen Gh einer in \({\Bbb R}\) definierten Funktion
\(h:x \mapsto a \cdot \dfrac{{{e^{bx}}}}{{{e^{bx}} + c}}{\text{ mit }}a,b,c \in {{\Bbb R}^ + }\)
4. Teilaufgabe d.1) 1 BE - Bearbeitungszeit: 2:20
Begründen Sie mithilfe des Grenzwerts \(\mathop {\lim }\limits_{x \to + \infty } h\left( x \right) = 40\) dass a=40 ist.
5. Teilaufgabe d.2) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie mithilfe des Achsenschnittpunkts S(0 | 4) von Gh , dass c=9 ist.
6. Teilaufgabe d.3) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie mithilfe des Wendepunkts \({W_h}\left( {40 \cdot \ln 9\left| {h\left( {40 \cdot \ln 9} \right)} \right.} \right)\) den Wert von b
Mithilfe der in \({\Bbb R}\) definierten Funktion
\(h:x \mapsto 40 \cdot \dfrac{{{e^{0,025 \cdot x}}}}{{{e^{0,025 \cdot x}} + 9}}\)
kann im Bereich \(\left( {10 \leqslant x \leqslant 120} \right)\) modellhaft die Höhe einer Fichte in Abhängigkeit von ihrem Alter beschrieben werden. Dabei ist x das Alter der Fichte in Jahren und h(x) die Höhe der Fichte in Metern.
7. Teilaufgabe e.1) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie auf der Grundlage der beiden betrachteten Modelle die Höhe einer Fichte mit einer Stammdicke von 25 cm
8. Teilaufgabe e.2) 1 BE - Bearbeitungszeit: 2:20
Tragen Sie den zugehörigen Punkt in die Abbildung ein.
9. Teilaufgabe f) 4 BE - Bearbeitungszeit: 9:20
Zeichnen Sie in obige Abbildung den Verlauf des Graphen der Funktion, die auf der Grundlage der beiden betrachteten Modelle die Höhe einer Fichte in Abhängigkeit von ihrer Stammdicke beschreibt.
Aufgabe 6024
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Der Marketingchef einer Handelskette plant eine Werbeaktion, bei der ein Kunde die Höhe des Rabatts bei seinem Einkauf durch zweimaliges Drehen an einem Glücksrad selbst bestimmen kann. Das Glücksrad hat zwei Sektoren, die mit den Zahlen 5 bzw. 2 beschriftet sind (vgl. Abbildung).
Der Rabatt in Prozent errechnet sich als Produkt der beiden Zahlen, die der Kunde bei zweimaligem Drehen am Glücksrad erzielt. Die Zufallsgröße X beschreibt die Höhe dieses Rabatts in Prozent, kann also die Werte 4, 10 oder 25 annehmen. Die Zahl 5 wird beim Drehen des Glücksrads mit der Wahrscheinlichkeit p erzielt. Vereinfachend soll davon ausgegangen werden, dass jeder Kunde genau einen Einkauf tätigt und auch tatsächlich am Glücksrad dreht.
1. Teilaufgabe a) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie mithilfe eines Baumdiagramms die Wahrscheinlichkeit dafür, dass ein Kunde bei seinem Einkauf einen Rabatt von 10% erhält.
(Ergebnis: \(2 \cdot p - 2 \cdot {p^2}\) )
2. Teilaufgabe b) 3 BE - Bearbeitungszeit: 7:00
Zeigen Sie, dass für den Erwartungswert E(X) der Zufallsgröße X gilt:
\(E\left( X \right) = 9 \cdot {p^2} + 12 \cdot p + 4\)
Die Geschäftsführung will im Mittel für einen Einkauf einen Rabatt von 16% gewähren.
3. Teilaufgabe c.1) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie für diese Vorgabe den Wert der Wahrscheinlichkeit p.
Berechnen Sie für diese Vorgabe den zugehörigen Mittelpunktswinkel des Sektors mit der Zahl 5.
Die Wahrscheinlichkeit, dass ein Kunde bei seinem Einkauf den niedrigsten Rabatt erhält, beträgt 1/9.
4. Teilaufgabe d) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie, wie viele Kunden mindestens an dem Glücksrad drehen müssen, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens einer der Kunden den niedrigsten Rabatt erhält.
Es drehen 180 Kunden am Glücksrad.
Teilaufgabe e) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie, mit welcher Wahrscheinlichkeit mindestens 10 und höchstens 25 dieser Kunden den niedrigsten Rabatt für ihren Einkauf erhalten.